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Reducing Tail Latency In Cassandra Cluster

Using Regression Based Replica Selection

Algorithm∗

Chauque Euclides Teles Tomas

Abstract

Online applications adoption and success is driven by a multitude of factors

among them the service response time, this is natural as users tend to prefer a

faster service than a slower. However, it is challenging to deliver consistently

fast response times due to performance variability inherent to the infrastructure

running the application, this performance variability causes a fraction of user re-

quests to experience unusual latency called tail latency. The tail latency assumes

a more preponderant effect as the application infrastructure scales out, creating

an additional delay point as an additional server is added, hence it is critical to

track server’s response time in order to prefer the faster server when possible,

this is called replica selection. Replica selection algorithms have been proved

to help decrease tail latency in key value datastores, however has these datas-

tores evolved to support more sophisticated data models and query languages,

previously proposed methods become unusable as they have been designed with

certain assumptions about the datastores that no longer hold. In this work, a

linear regression based replica selection algorithm is proposed. The regression

model helps to estimate the how long a specific query is going to take to be

serviced, and based on this information a server with more or less resources is

chosen to service the query. The proposed approach is successful in reducing the

higher percentiles (p999) latency up to 20% while not impacting negatively the

throughput.

∗Master’s Thesis, Graduate School of Science and Technology, Nara Institute of Science and

Technology, September 14, 2020.
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1. Introduction

1.1 Background

For business oriented applications, fast and predictable response times are crit-

ical for a good user experience. To examine the impact of delays in application

response time, a study was conducted by Amazon and Google [2], where a con-

trolled delay was added on every query before sending back results to the user.

Among their findings is the fact that an extra delay of 500ms per query resulted

in a 1.2% loss of revenue. Google also found that the bounce probability in a

website increases the longer the website takes to load[2].

However, it is challenging to consistently deliver fast response time, since

applications are generally structured as multi-tiered, distributed systems, where

even serving a single end-user request may involve contacting multiple servers.

Significant delays at any of these servers can inflate the latency observed by users.

To illustrate this, as described in [15], let us consider a well provisioned server that

has an acceptable response time in 99% of the requests made to it, but the last

1% of the requests takes a second or more to serve, this situation would probably

be acceptable. However, if we then scale the application to 100 servers with the

same performance, and the request to be served is such that it needs a response

from all servers, the responsiveness of the application, assuming independence

between response times and using the ”at least one rule” for probabilities, would

change from 1% of the requests being slow to 63% of the requests taking more

than a second to serve [27], in the worst case scenario. The problem just described

is known as the tail latency problem, and is the reason why tail latency must be

taken seriously to provide a good service.

For a given server, the poor tail latency is primarily caused by transient per-

formance variability that cannot be completely removed. [15] describes the source

of performance variability in servers as being the attributable, among other fac-

tors, to shared resources (when machines are shared by different applications

contending for CPU cores, processor caches, memory and network bandwidth),

scheduled background daemons, queuing and garbage collection.

In the same way that fault-tolerant computing aims to create a reliable whole

out of less reliable parts, systems should be designed to create a responsive whole
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out of less-predictable parts. Systems with this property are referred to as tail

latency tolerant systems. Some of the techniques used to build such systems,

leverage the fact that replication is used in different layers of the application to

provide fault tolerance. For the database layer, which is the focus of this work,

data is replicated to several servers in a cluster to provide high availability. When

data is read, a replica selection algorithm should determine which node in the

cluster the request should be sent to. This replica selection algorithm can be

designed to meet different objectives, such as evenly distributing the requests

among the servers,this is the case for algorithms like round robin 2.1.1, or select

the nearest server based on latency or geographic proximity, the way it is done on

Mongodb[10]. When the replica selection algorithm is coupled with the ability to

predict query execution time, some database management task such as admission

control [28], query scheduling [18] progress monitoring[23] and system sizing[30],

can be achieved.

In the case of Cassandra, the built in selection algorithm provides good me-

dian latency, but the tail latency is often an order of magnitude worse than the

median[27], mainly due to the already described server performance variability.

In order to avoid a degraded tail latency, in this work, a new server selection

algorithm was experimented. It builds upon previously proposed algorithms,

therefore it takes into consideration the server response time as inspired by [25],

however [25] does not employ any mechanism to predict the query execution

time relying only on the post execution feedback to perform adjustments, the

proposed algorithm also use the expected duration of the query, as given by a

regression model, as input for the replica selection algorithm. The following are

the contributions of this work:

A linear regression based replica selection algorithm is proposed and imple-

mented on a Cassandra cluster with realistic data and queries. The proposed

approach is successful in reducing tail latency with an improvement on higher

percentile latency of around 99.9 percentile and above, while not decreasing the

throughput.
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1.2 Terminology and Definitions

1.2.1 Tail latency

In online systems, usually what is more important is the service‘s response time,

that is, the time between a client sending a request and receiving a response. In

most cases latency and response time are used interchangeably, even though they

are not quite the same. The response time is what the client sees, and the latency

is the duration that a request is waiting to be handled [21]. In this work, this

two terms are used interchangeably since latency is relatively harder to measure,

the response time provides a good proxy for it.

For a given application, even if we only make the same request over and over

again, a slightly different response time will be observed in every try. We therefore

need to think of latency not as a single number, but as a distribution of values that

can be measured. Having this distribution, to figure out how bad the outliers are

we can look at higher percentiles the 95th, 99th and 99.9th percentiles, commonly

abbreviated as p95, p99 and p999. These percentiles represent thresholds at which

95, 99 or 99,9 of requests are faster than a particular value. For example, if the

95th percentile response time is 1.5 seconds, that means 95 out of 100 requests

take less that 1.5 seconds, and 5 out of 100 requests take 1.5 seconds or more.

Higher percentiles of response times, are also known as tail latencies. tail

latencies become especially important in back-end services that are called multiple

times as part of serving a single end-user request such as described on figure 1,

since the end users request still needs to wait for the slowest request to complete,

it takes just one slow call to make the entire end-user request slow.

1.2.2 Cassandra

Apache Cassandra [13, 1] is a NoSQL, open source, distributed and decentralized

database that bases its distribution design on Amazon’s Dynamo and its data

model on Google’s Bigtable. It was created at Facebook in 2007, and is now used

at some of the most popular sites on the web.

Cassandra Architecture

Cassandra is frequently used in systems spanning physically separate loca-

tions, and provides two levels of grouping that are used to describe the topology
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Figure 1: Effect of 1 back-end server poor latency on the entire request response

time [21]

of a cluster: data center and rack. A rack is a logical set of nodes in close prox-

imity, perhaps on physical machines in a single rack. A data center is a logical

set of racks, perhaps located in the same building and connected by a reliable

network.

Rings and Tokens

In Cassandra a cluster of nodes is logically represented as a ring. Each node

in the ring is assigned one or more ranges of data described by a token, which

determines its position in the ring.

Partitioners

A partitioner determines how data is distributed across nodes in the cluster,

and is a hash function for computing the token of a partition key.

Replication

A node serves as a replica for different ranges of data. If one node goes down,

other replicas can respond the queries for that range of data. Cassandra replicates

data across nodes in a manner transparent to the user, and the replication factor

is the number of nodes in the cluster that will receive copies (replicas) of the same

data. If the replication factor is 3, then 3 nodes in the ring will have copies of

the same data.
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Cassandra Query Language

The syntax of Cassandra Query Language (CQL) is similar in many ways to

SQL, but with some differences derived from the difference of Cassandra data

model and those from the relational databases. In newer releases of Cassandra,

the CQL has been reworked to support flexible data types, including simple char-

acter and numeric types, collections, and user-defined types, and also user defined

functions. The later allowed the translation of a subset of TPC-H[8] SQL based

queries into Cassandra compatible queries.

Clients

Just like applications connect to a relational databases using drivers like

JDBC, there are also Client drivers available for Cassandra in various program-

ming languages, for this work, the python driver was used. These drivers are

easily embedded in the application code.

Load Balancing Policies

The client driver provides several functionalities that can be used to tune

application behavior. These functionalities include Load Balancing. Because a

query can be made to any node in a cluster, if a client were to direct all of its

queries at the same node, this would produce and unbalanced load on the cluster.

To get around this, the driver provides a pluggable mechanism to balance the

query load across multiple nodes. The driver provides two basic load balancing

implementations: the RoundRobin policy and the DCAwareRoundRobinPolicy.

In this work, the referred pluggable feature was used to provide a custom code

to implement the replica selection strategy.

Cassandra Reads and Writes

Writing data is very fast in Cassandra, because its design does not require per-

forming disk reads or seeks on writes, which is what slows down some databases,

all writes in Cassandra are append-only. On the other hand, because clients can

connect to any node in the cluster to perform reads, without having to know

whether a particular node acts as a replica for that data, reads become easy in

Cassandra. If a client connects to a node that does not have the data it is trying

to read, the connected node will act as a coordinator node, to read the data from

a node that does have the data, identified by token ranges. Due to this, reads are

generally slower than writes, to fulfill read operations, Cassandra typically has
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to perform seeks [13]. With this known behavior, this work focus on improving

performance of read operations.
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2. Related Work

In this chapter, previous work found in the literature is presented and reviewed

and a case for an alternative approach is made. The related work covers two

major areas: replica selection algorithms and query duration prediction.

2.1 Replica Selection

As already stated, a recurring pattern to reducing tail latency is to exploit the

redundancy built into each tier of the application architecture. [25] shows that

the problem of replica selection — wherein a client node has to make a choice

about selecting one out of multiple replica servers to serve a request — is a first-

order concern in the context of taming tail latency. However, interestingly, the

impact of the replica selection algorithm has often been overlooked. For example,

layering approaches like request duplication and request reissues (also known as

speculative retry) [15] in a poorly performing cluster should be cause for con-

cern as reissuing requests but selecting poorly-performing nodes to process them

increases system utilization [29] in exchange for limited benefits. Furthermore

[25] shows that the replica selection strategy has a direct effect on the tail of the

latency distribution.

Replica selection however, is made challenging by the fact that servers exhibit

performance fluctuations over time. Hence, replica selection needs to quickly

adapt to changing system dynamics. On the other hand, any reactive scheme in

this context must avoid entering unusual behaviors that lead to load imbalance

among nodes and oscillating instabilities. In addition, replica selection should

not be computationally costly, nor require significant coordination overheads.

2.1.1 Traditional Replica Selection

The interest in replica selection algorithms is not new, it has already existed in

different forms, being the most noticeably use of it in well known algorithms such

as Round Robin and Least Outstanding Requests, which will be described here.

Round Robin The Round Robin Algorithm [26], is a simple and starvation

free algorithm employed by process and network schedulers in computing. As the

term is generally used, time slices are assigned to each process in equal portions
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and in circular order, handling all processes without priority (also known as cyclic

executive). Round-robin scheduling is simple, easy to implement. Round-robin

scheduling can be applied to other scheduling problems, such as data packet

scheduling in computer networks.

Least Outstanding Requests In the Least Outstanding Requests (LOR),

for each request, the client selects the server to which it has the least number of

outstanding requests. This technique is simple to implement and does not require

global system information, which may not be available or is difficult to obtain in

a scalable fashion. In fact, this is commonly used in load-balancing applications

such as Nginx[5], recommended as a load-balancer for Riak[7] or Amazon ELB[3].

Static Replica Selection Static scheduling strategies permanently assign

one or multiple servers to handle predefined request that might be of primary

interest for the application. While this has been shown to be effective in some

contexts, scheduling in high load situations where large request overwhelm a

server, under certain workloads it may lead to the under utilization of the dedi-

cated servers[16].

2.1.2 Dynamic Replica Selection

Previous algorithms have in common the fact that they do not take into consid-

eration any server side metric, which makes them inefficient in accommodating

time-varying performance fluctuations across nodes in the system. Therefore a

replica selection strategy that takes into account the load across different servers

in the system is needed. In the case of Least-outstanding requests strategy (LOR),

[25] shows its flaw in reducing latency under realistic workloads, as shown in fig-

ure 2, which shows two replica servers that at a particular point in time have the

service times of 4 ms and 10 ms respectively, assuming all three clients receive a

burst of 4 requests each, based on purely local information, if every client selects

a server using the LOR strategy, it will result in each server receiving an equal

share of requests. This leads to a maximum latency of 60 ms, whereas an ideal

allocation in this case obtains a maximum latency of 32 ms.

The C3 Algorithm

C3 [25] is a replica selection algorithm that handles service time variations

among replicas. It has at its core 2 components: The Replica Ranking (or scor-
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Figure 2: Sub-optimal server selection using Least Outstanding Requests[25]

Figure 3: C3 Architecture Overview. RS: Replica Scoring, RL: Rate Limiter [25]

ing), and the Distributed Rate Control and Backpressure (or rate limiter)

The Replica Ranking component computes replica scores based on both ser-

vice time and queue size, using the feedback from individual servers. The smaller

the score is, the better the server is. This score is then used by a request co-

ordinator for choosing the replica that is expected to better help reduce the

request waiting time. Replicas are essentially ranked through a cubic function

that is driven by an Exponentially Weighed Moving Average of the servers re-

sponse times (EWMA), and additional terms to compensate for concurrency in

the system, and penalizing long queues. The scoring function is given as:

Ψs = Rs − 1/µs + (q̂s)
3/µs
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where

q̂s = 1 + os ∗ n+ qs

is the queue-size estimation term, oss is the number of outstanding requests from

client to server s, n is the number of clients in the system, and Rs, q̂s and µs are

the exponential moving average of the response time as witnessed by the client,

queue-size and service time feedback received from server s, respectively.

Additionally, the Backpressure component is used to avoid overloading a given

replica queue. Eventually, because the replica is fast it can be simultaneously

selected by several coordinators, C3 uses a rate control mechanism at each replica

to limit the arrival of requests.

srate← γ.(∆T − 3

√
β.R0

γ
)3 +R0

Where ∆T is the elapsed time since the last rate-decrease event, and R0 is

the saturation rate, the rate at the time of the last rate-decrease event. If the

receive-rate is lower than the sending-rate, the client decreases its sending-rate

multiplicatively by β. γ represents a scaling factor and is chosen to set the desired

duration of the saddle region.

When a request is issued at a client, it is directed to a replica selection sched-

uler. The scheduler uses the scoring function to order the subset of servers that

can handle the request, that is, the replica group (R). It then iterates through

the list of replicas and selects the first server S that is within the rate as defined

by the local rate limiter for S. If all replicas have exceeded their rate limits, the

request is enqueued into a backlog queue. The scheduler then waits until at least

one replica is within its rate before repeating the procedure. When a response

for a request arrives, the client records the feedback metrics from the server and

adjusts its sending rate for that server according to the cubic-rate adaptation

mechanism.

Heron Algorithm

Heron [19] improves on C3 by taking into consideration the size of the values

associated with the key being requested. This is due to the fact that in real-

istic workloads, the size in Kb of the values associated to the keys varies, and

10



Figure 4: Heron Architecture Overview [19]

that variation in addition to the server performance impacts the service time for

requests.

Heron, uses the same replica ranking strategy used by C3, however it does

not use the same rate limiter algorithm, it instead uses a Bloom Filter [12] to

track the size of the values associated to requested keys. Figure 4 shows the

architecture of heron.

The replica selection selects the replica that is expected to serve an incoming

request faster than the other replicas. It uses three types of information: (i)

whether the request is expected to access a small or a large value, as provided by

a bloom filter manager; (ii) the relative score of the servers holding replicas for

that key, as provided by the replica scoring module; (iii) whether these replicas

are currently handling a request for a large value or not. The last information

is maintained over time by the replica selection module. Specifically, the initial

status of a replica having no request to process is set to available. As long as

this replica processes requests accessing small values, its status remains available.

Instead, when a request accessing a large value is scheduled on a given replica,

its status becomes busy. The latter comes back to the available status when the

processing of the large request is over.

The definition of large or small value, is configurable by the system adminis-

trator.
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While C3 does not explore any query attribute leading, heron takes into con-

sideration the size of the values associated to keys, as a proxy for the query

duration, thus performing better when heterogeneous workloads are considered,

however, as it is discussed in the next chapter this approach is no longer trustwor-

thy for modern key/value stores including Cassandra since, more complex queries

on the data a possible, thus sum queries, like aggregation queries, may operate

in a range of keys rendering the bloom filter used by heron useful. Therefore,

alternatives approaches that take into consideration such advanced capabilities

of modern key data stores are required.

2.2 Predicting Query Execution Time

The ability to predict query execution time is useful for a number of database

management tasks, including admission control , query scheduling, progress mon-

itoring, and system sizing. Different methods are described in the literature,

however they can broadly be divided into Analytical-Model based and Machine

Learning based approaches.

2.2.1 Analytical-Model Based Approach

Analytical methods are typically used in query optimizer, which have as a primary

goal choosing a good query plan. To compare the different plans, the optimizer

uses cost models to produce rough costs estimates for each plan. Such models

consist of two parts, a logical and a physical model. The former is geared towards

the estimation of the data volumes involved, usually statistics about the data

stored in the database are used to predict the amount of data that each query

operator has to process. The underlying assumption is that a query plan that

has to process less data will also consume less resource and/or take less time to

be evaluated. The logical cost component depends only on the data stored in the

database, the operators in the query, and the order which these operators are to

be evaluated. The physical cost model on the other side accounts for the cost

of algorithm and implementation of each operator, and it includes metrics like

disk I/O required per operation [22]. However, the units used by most optimiser

do not map easily onto time units, nor does the cost reflect the use of individual

12



resources. [17]

2.2.2 Machine Learning Based Methods

The typical workload in a database system consists of a mixture of queries of

different types, running concurrently and interacting with each other. The in-

teraction among queries can have a significant effect on performance. Hence,

optimizing performance requires reasoning about query mixes and their interac-

tions, rather than considering individual queries. A major hurdle posed by query

interactions is in finding effective ways to capture and model them. There is a

large spectrum of possible causes for interactions that includes resource-related,

data-related, and configuration-related dependencies. Sometimes, interactions

are benign. However, depending on the system setting, the effect of interactions

can vary all the way from severe performance degradation to huge performance

gains. Furthermore, an interaction that occurs when a database system runs on

one hardware configuration may not happen when the same system runs on a

different hardware configuration. The implication of these challenges is that the

analytical cost models query will not work for modeling interactions. [11]

This has inspired alternative approaches to query run-time prediction, funda-

mentally based on machine learning [28, 11] developed a model that explores the

query interaction while [24], take advantage of the query structure, and operators

within the query to train a machine learning model on spark jobs.
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3. Proposed Approach Using a Linear Regres-

sion Model

As the merits and demerits of the algorithms of related work are described in

chapter 2, a motivation for an alternative approach that leverages the existing

work is presented in this chapter.

3.1 Improvement Opportunity

While C3 and Heron, present very interesting algorithms for the problem of replica

selection for reducing tail latency, some improvements are still possible. C3 replica

scoring model has shown itself to be very effective so much so that it was not

only adopted on the heron paper [19], but also in [20], however its rate control

mechanism has been show to be sub-optimal by [20]. In addition, because the

experimental work was solely based on synthetic data-set generated by YCSB

[14], the heterogeneous nature of real workloads was overlooked.

The Heron [19] algorithm, improves on this aspect by incorporating the re-

quested value size as a proxy for expected duration of the query. The assumption

being: larger values correspond to longer service times, and smaller values cor-

respond to shorter service time. This assumption may hold true to key value

data-stores using simple queries, however as Cassandra Query Language became

richer thus supporting more complex queries, such as aggregation queries and

user defined functions, the size of the value requested (query result) can not be

know before run-time as it may depend on the calculations the query needs to

perform.

Furthermore, for complex queries, as shown by [28] query duration is affected,

not only by the retrieved data, but also by concurrent queries, and this can not

be modeled by herons algorithm approach.

Last but not least, even for a single query, the response time is not always

the same, as seen in figure 5, which shows the response time distribution for 5

different queries.
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Figure 5: Response Time Variations of Queries

3.2 Regression Based Algorithm

The query behaviors described on section 3.1 motivate the approach presented

in this work. For an application with defined number of queries, an experiment

driven approach can be adopted in order to understand how those queries interac-

tion affect each others run-time at different levels of concurrency, and a regression

model can be used to extrapolate this interaction for other concurrency levels.

The resulting regression model can then be used at run-time to predict the

duration of the query, and inform a replica selection decision.

The resultant regression model is used as per defined in the algorithm:

As described on the algorithm, the proposed method keeps a sorted list of

servers based on their response time, using an Exponential Moving Average 3.2.1,

and for requests expected to have a run-time time greater than a specified thresh-

old, a faster server (the first on the list), is chosen to serve the request. For queries

expected to have a run-time shorter than the threshold, the round robin selection

is used.
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Algorithm 1: Replica Selection Algorithm

sort(replicas)

dictRegressors

threshold

makeQueryPlan(query)

if query in dictRegressors.keys then

execTime = predictExecTime(query)

if execTime > threshold then
return replicas[0]

else
return roundRobin(replicas)

else
return roundRobin(replicas)

3.2.1 Exponential Moving Average

An exponential moving average (EMA), also known as running average is a tech-

nique used to analyze trends in a data set by creating a series of averages of

different subsets of the full data set. Given a sequence of numbers and a fixed

subset size, the first element of the moving average sequence is obtained by taking

the average of the initial fixed subset of the number sequence. Then the subset

is modified by excluding the first number of the series and including the next

number following the original subset in the series. This creates a new averaged

subset of numbers.

Mathematically, given a sequence a1, ..., aN an n-moving average is a new

sequence given by:

si =
1

n

(i+n−1)∑
j=i

aj

An illustration of a moving average with n equal 2, 3 and 4 is shown on figure

6

An exponentially weighted moving average (EMWA), instead of using the

average of a fixed subset of data points, applies weighting factors to the data
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Figure 6: Moving averages for 20 data points with n equal 2(red),3(green) and 4

(blue)

points. The weighting for each older data point decreases exponentially, never

reaching zero. The EMWA for a series Y can be calculated as:

S1 = Y1

for t¿ 1

St = αYt + (1− α)St−1

Where α represents the degree of weighting decrease, a constant smoothing

factor between 0 and 1. A higher value of αdiscounts older observations faster.

Yt is the value at a time period t, and St is the value of the EMWA at a time

period t.

Using an exponential moving average allows for better tracking of servers

response time, and provides a good value to infer how fast a server has been

performing.

3.2.2 Linear Regression

A Linear regression is a predictive method in which the target value is expected

to be a linear combination of the features. In mathematical notation, if Ŷ is the

predicted value, then:

Ŷ (w, x) = w0 + w1x1 + ...+ wpxp
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Among the existent linear regression algorithms, for this work the Ordinary

Least Squares (OLS) was used, the main goal of this algorithm is to fit a model

with coefficients w = (w1, ..., wp) to minimize the residual sum of squares be-

tween observed targets, Y, in the dataset, and the targets predicted by the linear

approximation Ŷ

θ̂ = arg min
n∑

i=1

(Yi − Ŷi)
2

The main motivation for choosing a simple regression is the aim to have a

lightweight model in order to avoid delay caused by the overhead of making a

prediction, sklearn library documentation shows that linear regression models are

much faster on their predictions when compared with other models, this charac-

teristic is desirable to avoid overhead and decreased throughput. Superior models

were not considered at this point, as they tend to be realized with additional

overhead. Furthermore [28] reported that even though superior models, such as

multi-layer perceptron, showed up to 10% improvements in accuracy compared

to a simple linear regression, the overall improvement in performance of their

system did not justify the added complexity of those models.

R-Squared R-squared evaluates the scatter of the data points around the

fitted regression line. It is also called the coefficient of determination, or the

coefficient of multiple determination for multiple regression. For the same data

set, higher R-squared values represent smaller differences between the observed

data and the fitted values. R-squared is the percentage of the dependent variable

variation that a linear model explains.

R2 = 1− SSE

SST

where SSE is the Sum of Squared Errors given by:

SSE =
n∑

i=1

(Yi − Ŷi)
2

And SST is the Sum of Squared Total, given by:

SSE =
n∑

i=1

(Yi − Yi)2
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Yi is the mean of Y.

R-squared is always between 0 and 100% or 0 and 1. 0 represents a model that

does not explain any of the variation in the response variable around its mean.

The mean of the dependent variable predicts the dependent variable as well as

the regression model. 1 represents a model that explains all of the variation in

the response variable around its mean.
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Figure 7: Proposed Method Overview

4. Implementation Of The Regression Based Al-

gorithm In a Cassandra Cluster

This chapter is aimed at describing the details of the implementation of the

proposed algorithm. The process of generating the training data, the queries

used, etc.

4.1 Regression Based Query Execution Time Prediction

Figure 7 shows the main functional parts of the proposed algorithm. At the

client side, a regression model is used to determine whether the incoming request

is a long request or not based on a configurable threshold. Based on the result

obtained through the regression model, the Replica Scoring component, which

keeps a sorted list of servers response time, chooses to forward the incoming

request to the fastest server if it is deemed as a long running query, if the query

is deemed as a short running, it is sent to the servers following a round robin

approach. This strategy allows for the fastest, maybe the more resourceful servers

to process high loads than the slower servers. However, whenever long running

queries are not present, the fastest servers do not remain idle, as the load is

distributed even among the servers, through a round robin approach.

To predict the query run-time before its execution, an experimental approach
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is used with the aim of observing each query run-time values distribution.

4.1.1 Training Data Generation

To generate the data to fit the regression model, a key-space with 3 tables was

created in the cluster. This tables correspond to TPC-H benchmark tables (or-

der, customer and lineitem tables). Records were inserted in each table and

subsequently locust 4.1.1 was used to generate requests using 5 query templates

from the TPC-H benchmark. For each run, locust was run for 5 minutes and the

output file saved. This process done repeatedly allowed the creation of multiple

files containing the run-time information for different percentiles for the queries

as per the output of locust 4.1.1.

These files were later parsed and consolidated to create the training and testing

data-set. As expected, each query exhibit a different behavior in terms of run-

time values, a visualization of these run-times, can be seen in figure 8. And also

each query has its own data, thus a regression model for each query is needed.

Locust Locust [4] is an easy-to-use, distributed, user load testing tool. It is

intended for load-testing web sites (or other systems) and figuring out how many

concurrent users a system can handle. It also provides response time percentiles

as output of the test, which helps to understand when a system is performing

poor than expected.

The idea is that during a test, a swarm of locust users will attack the system.

The behavior of each user is defined by using Python code, and the swarming

process is monitored from a web UI in real-time, logged to the console or written

to a file. In the case of this work, each user would be responsible of running a

specific query with a defined frequency.

Locust is completely event-based, and therefore it is possible to support thou-

sands of concurrent users on a single machine, and uses light-weight processes,

through Gevent[9]. Each locust swarming your site is actually running inside its

own process (or greenlet, to be correct). Figure 9 shows a typical output of locust

statistics, where the header is mainly composed by specific percentiles, and the

columns represent the threshold time value for a specific percentile.
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(a)

(b)

(c)

Figure 8: Run-time for Different Queries Under Different Concurrency Levels
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Figure 9: Locust Statistics Output in the Console

Table 1: R Scores Values Per Query.

Query R Squared(OLS) R Squared(SGD)

Aggregated 0.89 0.89

Distinct ReturnFlag 0.82 0.82

Pricing Summary 0.92 0.92

Pricing Summary v2 0.88 0.87

Pricing Summary v3 0.88 0.87

Pricing Summary v4 0.91 0.91

Query 3 0.82 0.82

Query 3 v2 0.51 0.51

fetch all data 0.83 0.83

fetch by discount 0.83 0.83

4.1.2 Input and Output Data, and Fitting

As for the machine learning model, a linear regression algorithm implemented by

sklearn[6] was used.

As mentioned before, each model query has its own regression, and each of

these models takes as input the concurrency level value, and the query identifier.

Thus a dictionary is used to hold all fitted regression at run time. As for the

output the model provides an estimate of the time the query will take to be

processed.

For each query regression the R squared value was computed as seen on the

table 1, and the fitted line for one of the queries is shown in figure 10.
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Figure 10: Fitted line for one query
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4.2 Replica Selection Implementation

Once the regression models for each query were defined, they had to be used on

run-time to actually make the prediction for every incoming query. To accomplish

these the python driver was extended to support an additional loading balancing

policy. The main difference of the policy implemented with those that come

with Cassandra out of the box is the fact that the proposed policy takes into

consideration a threshold value, and also the concurrency level as provided by

locust, and use the model to predict the run-time of the query at hand. If

the predicted run-time is greater than the threshold a faster server is selected,

as per the exponential moving average calculation. Because there are multiple

regression, 1 for each query type, every time a new query comes it needs to be

identified so that the correct model is used. To accomplish this a dictionary, which

is an implementation of a hash function is used, the query string constitutes the

key of the dictionary and the trained regression model the corresponding value.
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5. Experimental Results and Discussion

This chapter is divided into 3 major section, on the first the experimental environ-

ment is described, as well as the data used. Next the performed experiments are

described and then on the final section the results of the experiments is presented

and discussed.

5.1 Experimental Environment

As a testing bed for the experiments, a cluster comprised of 8 servers Sun Fire

X2270 2.26GHz Intel Xeon L5520 4 Cores, 12GB RAM and 500GB 7200rpm

SATA disk, was used. All 8 servers were connected through a Gigabit speed

network. As for the load generating machine, which was used to instrument

locust and generate the load, it was a Intel Core i7-4790 3.60GHz 8 cores with

16GB RAM, also connected through a Gigabit network.

The cluster was setup with a replication factor of 3, which means all data was

distributed among the 8 servers, and each chunk of data was replicated among

3 servers. The read consistency level was set to 1, which means that the client

driver will only wait for the response of 1 server.

To allow all the queries to finish the defaults timeouts were increased on

Cassandra server side and client side (driver), to values big enough to prevent

timeouts.

5.2 Experiments

The experiments executed were mainly aimed at comparing the higher latency

percentiles using the proposed algorithm and other replication selection methods

that is officially supported by all Cassandra drivers, which is at this point the

round robin. Additionally, the throughput values are compared.

5.2.1 Environment With Homogeneous Servers

This was the simplest experiment, a workload was run using each replica selec-

tion algorithm for equal number of times, and the results were compared. This

experiment aimed at observing how the proposed algorithm would behaved in
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an environment where the server performance differences were inherently derived

from transient processes on the server itself. Since the cluster used is composed

by servers with the same specifications, it was expected a less accentuated im-

provement than it would be expected for a cluster with servers with different

specifications.

5.2.2 Environment With Heterogeneous Servers

For this experiment the tc Linux tool was used to introduce some controlled de-

lay, 0.5 seconds to 2 seconds in 4 servers. This was mainly to study how the

replica selection algorithms would behave in an environment comprised of servers

with different resources, which is not an unusual situations for systems that can

scale horizontally, such as Cassandra. The servers on the original environment

are from the same series thus have the same specifications, therefore under same

conditions their performance is expected to be the same, and any difference can

only be attributed to the (transient) behaviour of the processes running, and

not on the underlying hardware. It was expected that in a heterogeneous en-

vironment, the proposed algorithm would perform significantly better than in

homogeneous environments, since the difference in server performance would be

much accentuated.

5.3 Results Discussion

5.3.1 Environment With Homogeneous Servers

As for the experiment with Homogeneous servers, following is the summary of

the results found. As per figure 11, it is possible to observe an improvement

for the long running queries, generally the data-set for this queries presented a

more clear relation between the response time and the concurrency level thus

resulting in a model with better predicting capacity, this resulted in a better

segregation of these queries at runtime, conversely the short running queries had

their performance as given by the response time affected negatively and the short

running queries had their response time not affected by the concurrency level.

This might suggest that a better performing model mighty help reduce the tail

latency, however the prediction overhead mighty be increased, thus a compromise
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will need to be made. Still in figure 11, the last two bars represent the aggregated

response time i.e. the p999 percentile when all requests are considered together.

In this case when can clearly see that the regression based model fares better

than the round robin model. This might be attributed to the reduction in the

response time of the longer running queries, because these longer running queries

were directed to the fastest running server at runtime.

For a more granular comparison between the different percentiles, the p50, p90

and p999 are compared in figure 12, it is possible to observe that while higher

percentiles are improved, the lower percentiles are negatively affected, this is also

related with the poor performance of short running query, since the number of

delayed queries among this type of queries increases.

Finally, the effect of the proposed approach was evaluated in terms of its effect

on the throughput, i.e the number of request per second. The result can be seen

on figure 13. It can be seen that the result presents no major difference between

the round robin and the proposed approach, if the standard deviation is taken

into account.

5.3.2 Environment With Heterogeneous Servers

Following are the results for the experiment with added delay to simulate an

environment with servers with different resources. From the figure 14 it can be

seen that the response time for all queries increased, as expected, however it can

also be seen that the linear regression based algorithm yields better response

time for all queries. This suggests that the algorithm has potential for delivering

consistently better results in environments with servers with tangible resource

disparity, a situation that is common in horizontally scalable system that use

commodity servers. The difference between servers response time, helps to absorb

the overhead caused by the prediction process, thus the time lost in doing the

prediction is compensated by the fact that a significantly faster server processes

the query more rapidly.

Furthermore, as seen in figure 15 the lower percentiles p50 and p90 suffer less

degradation when the policy is used. And last but not least, the throughput is

substantially improved as seen in figure 16

Last, Fig 17show the comparison between the state of the art algorithm

28



(a)

(b)

Figure 11: Comparison of the a) p999 and b) p99999 for round robin and regres-

sion based replica selection
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(a) (b)

(c)

Figure 12: Comparison Between a)p50, b)p90 and c) p999 for homogeneous server

environment
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Figure 13: Throughput Comparison For Homogeneous Environment
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(a)

(b)

Figure 14: Comparison of the a) p999 and b) p99999 for round robin and regres-

sion based replica selection when delay is introduced
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(a) (b)

(c)

Figure 15: Comparison Between a) p50, b) p90 and c) p999 when delay is intro-

duced
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Figure 16: Throughput Comparison when delay is introduced
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(Heron) and the proposed algorithm for a homogeneous servers scenario. The

comparison was done for just a subset of queries since the Heron algorithm was

implemented in a Cassandra code base that did not support aggregation queries,

hence Heron algorithm itself was not designed to support them, i.e., the Bloom

track how big individual values are, and not how big the result of a computation

over many values is. For this reason, an in-depth comparison is not done. The

results are consistent with what was observed when comparing the proposal with

round robin.
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(a)

(b)

Figure 17: Comparison of the a) p999 for all queries, and b) p999 aggregated for

Heron and regression based replica selection in homogeneous environment
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6. Conclusion

In the present work the tail latency problem was reviewed, and the problem

of optimal server selection was considered as a method to reduce tail latency.

Previous work had been based in a simpler query pattern, thus is no longer

suitable for the complex queries that came to be supported in Cassandra, this

served as motivation for exploring a new approach for server selection using a

regression model to model the interaction between the queries. This new approach

proved to be successful in reducing tail latency, while preserving the throughput,

however it affected negatively the lower percentiles. While this could be less

favorable for short running queries, it is a trade-off that can be beneficial for

large scale application where the tail latency problem is more noticeable. A

still remaining issue, is to evaluate how the proposed method will behave when

heterogeneous data-set such as those Heron was designed to handle are considered.
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