
Doctoral Dissertation

Offensive and Defensive Strategies
on In-Vehicle Networks:

Toward Disabling DoS Vulnerability

Shuji Ohira
Program of Information Science and Engineering

Graduate School of Science and Technology
Nara Institute of Science and Technology

Supervisor: Prof. Kazutoshi Fujikawa
Internet Architecture and Systems Lab. (Division of Information Science)

Submitted on March 1, 2023

A Doctoral Dissertation
submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of Engineering

Shuji Ohira

Thesis Committee:
Supervisor Kazutoshi Fujikawa

(Professor, Division of Information Science)
Yuichi Hayashi
(Professor, Division of Information Science)
Youki Kadobayashi
(Professor, Division of Information Science)
Ismail Arai
(Associate Professor, Division of Information Science)

Offensive and Defensive Strategies
on In-Vehicle Networks:

Toward Disabling DoS Vulnerability∗

Shuji Ohira

Abstract

Due to the increase in the number of automobiles that connect to the Internet,
cyberattack on Controller Area Network (CAN) is becoming a severe problem.
CAN is one of the in-vehicle network protocols for communicating among Elec-
tronic Control Units (ECUs) and it is a de-facto standard of in-vehicle networks.
Some security researchers point out several vulnerabilities in CAN such as Denial-
of-Service (DoS) attacks and no identifiability of sender. To deal with these vul-
nerabilities, Intrusion Detection Systems (IDSs) and authentication mechanisms
on CAN-bus have been proposed. However, the IDSs focus on detecting spoof-
ing, replaying, and DoS attacks, so that IDSs do not provide protection against
these attacks. In addition, a state-of-the-art IDS for DoS attack detection is
probably only effective against DoS attacks under naive conditions such as some
high-priority messages. It means that an attacker probably evades the IDS by ma-
nipulating feature IDS used. On the other hand, the authentication mechanisms
focus on protecting against spoofing and replaying attacks. For these reasons, ex-
isting IDSs and authentication mechanisms cannot disable DoS attacks on CAN.
Thus, to permanently disable DoS attacks on CAN, this dissertation studies the
threat of DoS attacks from two different points: offense and defense.

Our main contributions consist of unveiling a new evasion attack and propos-
ing three defensive strategies (detection, identification, and protection) for dis-
abling DoS attacks including our evasion attacks. First, we derive a new evasion

∗Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science
and Technology, March 1, 2023.

i

attack called entropy-manipulation attack which is not detectable with a state-of-
the-art IDS based on entropy of CAN. To address the evasion attack against the
IDS, our similarity-based IDS detects DoS attacks including our evasion attacks
using sliding window optimized similarity. Next, we propose a sender identifica-
tion method based on physical-layer characteristics, called Physical-Layer Iden-
tification (PLI). To apply a security patch to the compromised ECU attacking
the CAN, PLI accurately identifies the compromised ECU. Our IDS and PLI can
detect DoS attacks and identify the compromised ECU that sends DoS attacks
however IDS and PLI do not provide protection. Therefore, finally, we introduce
IVNProtect which provides isolable and deployable CAN-bus kernel-level pro-
tection. Three defensive strategies are evaluated in a CAN-bus prototype and
a real-vehicle. And the experimental results show that defensive strategies can
successfully handle the attacks in the environments.

Keywords:

Automotive Security, Controller Area Network, Denial-of-Service Attack, En-
tropy, Sender Identification, Machine Learning

ii

Contents
1. Introduction 1

1.1 Security Threats on Automotive IoT 1
1.2 State-of-the-Art Defenses on CAN 3

1.2.1 Message Authentication 3
1.2.2 Intrusion Detection . 3

1.3 Problems . 4
1.3.1 An Undiscovered DoS Vulnerability of Entropy-Based IDS 4
1.3.2 Drawbacks of Intrusion Detection, Physical-Layer Identifi-

cation, and CAN-Bus Protection 5
1.4 Dissertation Contributions . 6

1.4.1 Motivation and Approach 6
1.4.2 Dissertation Goal and Scope 6
1.4.3 entropy-manipulation attack: Evasion Attack on Entropy-

Based IDS . 7
1.4.4 Sliding Window Optimized Similarity Analysis Method . . 8
1.4.5 PLI-TDC: Physical-Layer Identification with Time-to-Digital

Converter for In-Vehicle Networks 8
1.4.6 IVNProtect: Isolable and Traceable Lightweight CAN-

Bus Kernel Protection . 9
1.5 Outline . 9

2. Controller Area Network and Its Vulnerabilities 10
2.1 CAN Primer . 10

2.1.1 CAN Frame . 12
2.1.2 Arbitration . 13
2.1.3 Error Handling . 13

2.2 Vulnerablilities of CAN . 14
2.3 Attack Surfaces on Automotive IoT 16
2.4 Our Remote Adversary Model . 18

3. entropy-manipulation attack: Evasion Attack on Entropy-Based
IDS 19

iii

3.1 Introduction . 19
3.2 Related Work . 20
3.3 Entropy-Based IDS . 21

3.3.1 Fixed Time Based Method 21
3.3.2 Sliding Window Based Method 22

3.4 Attacker Model . 22
3.4.1 Traditional DoS Attack . 24
3.4.2 Randomized DoS Attack 24
3.4.3 Targeted DoS Attack . 25

3.5 Feasibility of entropy-manipulation attack 25
3.5.1 Root Cause of Evasion Attack 25
3.5.2 Higher Priority IDs than Actual IDs 27
3.5.3 Sliding Window Poisoning Tactics 28

3.6 Evaluation . 30
3.6.1 Entropy of Real-Vehicles 30
3.6.2 Recall of Entropy-Based IDS under entropy-manipulation

attacks . 34
3.6.3 Precision of Manipulation-Aware Entropy-Based IDS . . . 35
3.6.4 Evasive Performance during Sliding Window Poisoning Tac-

tics . 38
3.7 Discussion . 38

3.7.1 Feasibility of Evasion Attack on Entropy-Based IDS 38
3.7.2 Detection of entropy-manipulation attacks 39

3.8 Conclusion . 39

4. Sliding Window Optimized Similarity Analysis Method against
entropy-manipulation attack 41
4.1 Introduction . 41
4.2 Similarity-Based IDS against Various DoS Attacks 42

4.2.1 Definition of Similarity . 43
4.2.2 Framework of Similarity-Based IDS 44
4.2.3 On-Line Detection Phase 46
4.2.4 Off-Line Detection Phase 47

4.3 Evaluation . 51

iv

4.3.1 Precision against Various DoS Attacks 51
4.3.2 Precision against Various CAN ID Ranges of Randomized

DoS Attack . 53
4.3.3 Detection Time . 54

4.4 Discussion . 58
4.4.1 Precision . 58
4.4.2 Detection Time . 58
4.4.3 Comparisons . 59

4.5 Conclusion . 62

5. PLI-TDC: Physical-Layer Identification with Time-to-Digital Con-
verter for In-Vehicle Networks 64
5.1 Introduction . 64
5.2 Related Work . 65

5.2.1 Voltage Domain Characteristics Based PLI 65
5.2.2 Time Domain Characteristics Based PLI 67

5.3 Super Fine Delay-Time Based Physical-Layer Identification 69
5.3.1 Data Acquisition with TDC 69
5.3.2 Feature Extraction . 76
5.3.3 Classification . 76
5.3.4 Enhancing the Concept Drift Robustness 78
5.3.5 Implementation . 79

5.4 Evaluation . 82
5.4.1 Environments and Attacker Models 84
5.4.2 Idetification of ECUs . 85
5.4.3 Attacker Detection . 87
5.4.4 Identification of ECUs under Temperature Concept Drift . 88
5.4.5 Detection Time . 94

5.5 Discussion . 94
5.5.1 Identification / Detection Accuracy 94
5.5.2 Number of Samplings . 96
5.5.3 Detection Time . 97
5.5.4 Stability and Life-Cycle 98
5.5.5 Comparison with Time Domain Reflectometry 98

v

5.5.6 Limitation . 99
5.6 Conclusion . 99

6. IVNProtect: Isolable and Traceable Lightweight CAN-Bus Kernel-
Level Protection 101
6.1 Introduction . 101
6.2 Related Work . 103

6.2.1 Protections Implemented on Bus 103
6.2.2 IDS-side Protection . 104
6.2.3 ECU-side Protections . 104

6.3 Proposed CAN-Bus Kernel-Level Protection 107
6.3.1 Threat Models . 107
6.3.2 Problem Statement . 107
6.3.3 Overview of IVNProtect 109
6.3.4 Detection Modules . 111
6.3.5 Security Error State Mechanism 112

6.4 Implementation . 114
6.5 Evaluation . 117

6.5.1 Environment and Dataset 117
6.5.2 Prevention of DoS Attacks 117
6.5.3 Isolation Time . 118
6.5.4 Benign Transmission Loss Rate under DoS Attacks 118
6.5.5 Benign Transmission Delay under DoS Attacks 118
6.5.6 Overhead with IVNProtect 122

6.6 Discussion . 123
6.6.1 Comparison among ECU-side Protections 123
6.6.2 Warning Response using IVNProtect 124

6.7 Limitation . 125
6.8 Conclusion . 126

7. Conclusions and Future Research Direction 127
7.1 Reviewing the Research Contributions 127
7.2 Open Issue and Future Research Direction 128

7.2.1 Protection of Physical-Layer Attacks 128

vi

7.2.2 Sophistication of IDS and PLI’s alerts for VSOC analysts . 129
7.2.3 Robustness of IDS and PLI for Concept Drift Caused by

Various Vehicles . 130
7.2.4 Improving Accuracy of Physical-Layer Identification 130
7.2.5 Security Analysis and Mechanism for Next-Generation In-

Vehicle Networks . 131

Acknowledgements 133

References 135

vii

List of Figures
1 Modern in-vehicle network architecture and our research target

attacker. 2
2 Four dissertation components and defense flow. 7
3 Typical CAN bus. 11
4 A CAN message and data frame. 11
5 State diagram of CAN error state machanism. 14
6 CAN vulnerabilities and the countermeasures. 15
7 Attack surfaces to the CAN (Linux based IVI) 17
8 The classification of DoS attacks on CAN. 23
9 Vulnerability of the entropy-based IDS. 26
10 Entropy of randomized DoS attack under different CAN ID range. 27
11 Sliding window poisoning tactic (static range [0, 0d55]). 31
12 Sliding window poisoning tactic (linear growth). 32
13 Sliding window poisoning tactic (non-linear growth). 33
14 Recall of entropy-based IDS against entropy-manipulation attacks. 35
15 Precision of manipulation-aware entropy-based IDS against entropy-

manipulation attacks. 36
16 Entropy of entropy-manipulation attack under different CAN ID

range [0, 0]-[0, 0d100]. 37
17 An example of WIDs and CIDs. 42
18 Flow of the similarity-based IDS. 45
19 Comparison of precision against entropy-manipulation attack. . . 55
20 Definition and requirements for detection time in CAN. 56
21 Comparison of detection time. 57
22 Timeline of PLI researches. 66
23 Proposed physical-layer identification. 69
24 Delay model in CAN. 70
25 Implementation method and timig-chart of TDC. 72
26 An example of two ECUs’ delay-times observed by Time-to-Digital

Converter. 74
27 Relation between Equation (10) and (16). 76
28 Implementation and prototype of PLI-TDC. 80

viii

29 An example of outputted measurement data from PLI-TDC. . . . 82
30 CAN message loss rates of PLI-TDC when changing the CAN bus

occupancies. 83
31 Environments for evaluations. 84
32 Attacker models defined by Sec. 2.4. 85
33 Our testing environment for changing the ambient temperature of

the CAN bus prototype. 89
34 Detection time on PLI-TDC. 98
35 Diagram of the proposed IVNProtect. 110
36 Security (Sec.) error states on IVNProtect. 113
37 Comparison of bitrate and busload between with and without IVN-

Protect. 119
38 Isolation time under different thresholds of detection counter for

security bus-off state. 120
39 Benign transmission (10090 messages) loss rate under different tx

queue size during DoS attacks. 121

List of Tables
1 Top high priority IDs in real-vehicles. 28
2 Comparison of average entropies of real-vehicle’s CAN data and

Randomized DoS attacks using available ranges. 29
3 Data set description. 34
4 Evasive performance during the each poisoning tactic. 38
5 Comparison of the precision at each DoS attack. 52
6 The experimental environment. 54
7 Comparison of the related works. 60
8 Comparison among time-domain based physical-layer identifica-

tions for CAN. 68
9 A list of statistical features considered in the selection. x is the

delay-time in one CAN message, N is the number of measured
delay-time in one CAN message. 77

10 Ranking of the features calculated by Relief-F [47]. 77

ix

11 Comparison of machine learning algorithms for PLI-TDC 78
12 Mean accuracy of each algorithm. 86
13 Confusion matrix for the identification of ECUs of the CAN bus

prototype. 86
14 Confusion matrix for the identification of ECUs of the real-vehicle. 87
15 Confusion matrix against sending ID: x from compromised ECU

spoofed to ECU3. 88
16 Confusion matrix against sending ID: y from compromised ECU

spoofed to ECU3. 88
17 A result of liner regression against temperature drift (CAN bus

prototype). 90
18 Mean accuracies under different temperature in CAN bus proto-

type (eight features). 91
19 Mean accuracies under different temperature in CAN bus proto-

type (eight features and temperature). 93
20 Mean accuracy under different time-resolution. 95
21 Comparison among voltage-domain based methods in Accuracy of

Identification (A.I.), Sampling Rate (S.R.), Best Number of Sam-
plings per message (B.N.S.), Worst Number of Samplings per mes-
sage (W.N.S.), Time Complexity in Feature extraction (T.C.F.),
Detection Time (D.T.). 95

22 Comparison among CAN-bus protections in Implementation Lo-
cation (I.L.), Isolability, Traceability for Root-cause of Isolation
(T.R.I.), Deployment Cost (D.C.), Harm for Benign Messages of
legitimate ECUs (H.B.M.). 106

23 Statistics of the arrival time of benign messages. 122
24 Comparison among ECU-side protections in Isolability, Traceabil-

ity for Root-cause of Isolation (T.R.I.), Deployment Cost (D.C.),
Harm for Benign Messages of legitimate ECUs (H.B.M.), Adap-
tation of Aperiodic Messages (A.A.M.), benign Transmission Loss
Rate during DoS attacks (T.L.R.). 124

x

1. Introduction
Vehicles are currently undergoing a paradigm shift to connect to the Internet.
Due to the paradigm shift, vehicles can perform autonomous driving, ride-sharing
services, and Over-The-Air (OTA) updating. Unfortunately, the paradigm shift
also brings to break down the cybersecurity of vehicles by hacking from remote
hackers. Therefore, countermeasures against cybersecurity for vehicles are im-
perative to secure the current automotive society. This dissertation researches
effective and defensive strategies to detect attacks, identify the causes of attacks,
and protect vehicles from attacks.

1.1 Security Threats on Automotive IoT

Various vehicles such as automobiles and route buses are connected to the Inter-
net (Fig. 1), and new concepts of services such as carpooling and ride-sharing
were born. Due to these influences, Mobility as a Service (MaaS) attracts at-
tention. MaaS enables users to perform useful operations such as route search,
reservation, and payment at once on smartphones. Moreover, it is expected to
solve traffic congestion and environmental problems in urban areas and to provide
transportation for mobility-impaired people in rural areas. Also, we can collect
transportation big-data (e.g., vehicle speed, engine speed, and location) from
vehicles connected to the Internet. Utilizing transportation big-data collected
from vehicles, we can obtain curated data such as accurate bus arrival time and
ridership prediction. In this dissertation, vehicles connected to the Internet are
defined as Automotive IoT.

While the Automotive IoT is increasing due to the aforementioned conve-
nience, there are security threats on Controller Area Network (CAN) [28], which
is a network inside vehicles. CAN is an in-vehicle network protocol used for
communication between Electronic Control Units (ECUs) and has become a de-
facto standard of in-vehicle networks. Miller and Valasek successfully controlled
a variety of automotive functions and, through In-Vehicle Infotainment system
(IVI), exploited the vulnerabilities of CAN [62]. As a result, 1.4 million auto-
mobiles were recalled because of this vulnerability. In 2016, Nie et al. exploited
the respective vulnerabilities of in-vehicle system browsers and CAN to demon-

1

Smart phone Other vehicles Smart home
Security Operation Center,

Insurance company, …

Internet

Edge server

Wi-Fi/
Bluetooth

4G/5G

Domain
Controller

IDS

ECUECU

ECU ECU ECU

IVI

Central
GatewayRouter

ECUECU

ECU

ECU
CAN

Ethernet

CAN

Diagnostic Port

Switch

Switch

Switch

ECU

ECU

ECUECU

Domain
Controller

Domain
Controller

In-vehicle networks

Ethernet

Attacker

Connected
equipments

Sensing
data

Sensors

Actuators

DoS

Data for
actuating

Figure 1: Modern in-vehicle network architecture and our research target at-
tacker.

strate that various functions of the vehicle can be controlled [71]. These attacks
use CAN vulnerabilities. CAN-bus is simple and has several vulnerabilities (e.g.,
Denial-of-Service (DoS) attacks, no identifiability of sender). Thus, once an ECU
with entry points to external networks (e.g. IVI) is exploited, an attacker can
inject malicious CAN messages from the exploited ECU.

On the other hand, vehicles can also use Vehicular Ad-hoc NETworks (VANETs)
(e.g., Vehicle-to-Vehicle and Vehicle-to-Infrastructure) to support drivers and au-
tonomous functions with the data of neighbor situations through Telematics Con-
trol Unit (TCU) [20]. VANETs communications enable vehicles to enhance safety
with crash avoidance and remote diagnosis. However, if the interface of VANETs
has a vulnerability, an attacker can intrude in-vehicle networks through TCU as
with the IVI.

2

1.2 State-of-the-Art Defenses on CAN

To address the attacker/threat described in Sec. 1.1, many researchers have pro-
posed two defensive strategies: message authentication and intrusion detection.
Here, we explain these defenses and point out their problems.

1.2.1 Message Authentication

Message authentication has been proposed to prevent spoofing and replaying
attacks on CAN [81, 92, 101]. Message authentication uses a hash algorithm
to guarantee the authenticity of messages. In detail, a receiver ECU can verify
the authenticity of a message by using a hash algorithm with a pre-shared key
which is shared with a legitimate sender ECU. Message authentication can disable
traditional hacking, in which an attacker sends a spoofed message to a specific
ECU. However, even in authenticated CAN-bus, message authentication cannot
disable DoS attacks that send many messages to the in-vehicle network, because
DoS attacks can delay the authenticated benign messages. The delay caused by
DoS attacks is a severe threat to CAN because even only exceeding 30 % bus
utilization causes unacceptable delays for some low-priority messages [13].

Moreover, message authentication requires additional hardware and the ex-
tension of source codes to authenticate CAN messages. Besides, since the message
authentication must manage the key lifecycle based on Public-Key Infrastructure
(PKI), the key-management increases the complexity of the automotive system.

1.2.2 Intrusion Detection

Intrusion Detection Systems (IDSs) have an advantage in terms of applicability
and implementation cost, unlike message authentication. One such case is IDSs
based on characteristics of CAN messages (e.g., frequency [88], entropy [60, 98],
ID sequence [59], physical-layer fingerprint [44, 46, 78]). The IDSs can be easily
adapted for the CAN bus of modern automobiles and have high detection accuracy
against spoofing, replaying, and DoS attacks. However, the IDSs provide no
protection for spoofing, replaying, and DoS attacks. Therefore, existing defenses
(i.e., message authentication and intrusion detection) cannot prevent DoS attacks.
It is necessary to build a protection mechanism that has features from DoS attack

3

detection to defense.
In addition, these IDSs may have higher false positives for undiscovered eva-

sion attacks which are launched by an attacker to manipulate the result of a
model with crafted input data [22]. For instance, physical-layer fingerprint-based
IDS cannot detect a spoofing attack which mimics the physical-layer character-
istics [7]. Therefore, it is necessary to investigate the feasibility of undiscovered
evasion attacks against state-of-the-art IDS.

1.3 Problems

As countermeasures against attacks on CAN, many researchers and industry de-
velopers have studied message authentications and IDSs. However, existing mes-
sage authentications and IDSs cannot disable DoS attacks on CAN. In addition,
if these countermeasures have a vulnerability such as evasion attacks, an attacker
can perform attacks on numerous vehicles at a large scale. Thus, at first, it is
essential to inspect whether a state-of-the-art DoS IDS has a vulnerability such
as evasion attacks. Next, we derive defensive strategies to solve the failure of
existing countermeasures.

1.3.1 An Undiscovered DoS Vulnerability of Entropy-Based IDS

After compromising an ECU, an attacker can inject the large number of messages
to the CAN bus, which is called DoS attacks. The attacker also exploits an
arbitration scheme which prioritizes the lower arbitration ID than the higher one.
In details, the attacker floods the targeted CAN bus with the highest priority ID
(e.g. 0x000). This attacks causes unexpected alerts of vehicles, violations of
the constraints for the arrival time of CAN messages and so on. Therefore, it
is required to detect and prevent the DoS attacks. As the state-of-the-art IDS
for DoS attacks, entropy-based IDSs have been proposed. The entropy-based
IDSs have fast detection capability, adaptation for various CAN baud rate, and
low hardware requirements. However, the question of whether the entropy-based
IDSs can detect DoS attacks when an attacker manipulates entropy has not been
clarified yet. To address this question, we find a way bypassing the entropy-based
IDSs from the attacker’s perspective.

4

1.3.2 Drawbacks of Intrusion Detection, Physical-Layer Identification,
and CAN-Bus Protection

We unveiled an evasion attack against the entropy-based IDS on CAN. It means
that the entropy, which has been claimed to be an effective characteristic for the
detection of DoS attacks, actually allows DoS attacks on CAN. To end the arms
race between evasion attacks and existing countermeasures, we propose three
defense strategies to prevent DoS attacks including our evasion attack on CAN.

Evasion Attacks on State-of-the-Art DoS IDS
To detect DoS attacks on CAN, the entropy-based IDS has been proposed.
We discover that the entropy-based IDS has a vulnerability against a DoS
attack in our research. To solve this vulnerability accompanied by inheriting
the good characteristics of entropy-based IDS, we derive a new characteristic
of similarity for detection of DoS attacks.

Misclassification of Delay-Time Based Physical-Layer Identification
An attacker tries to evade IDSs with adversarial attacks which manipu-
late some features such as entropy, payload, and so on. Hence, identifying
the attacker using immutable physical-layer characteristics is an effective
countermeasure because a remote attacker cannot manipulate physical-layer
characteristics. As one of these countermeasures, Physical-Layer Identifica-
tion (PLI) has been studied. The idea is to use physical-layer characteris-
tics (e.g., voltage, delay-time) of analog signal of one frame to identify the
sender ECUs of the frame. As the one of the PLIs, delay-time based PLI
have been proposed which is called Divider. Divider uses the difference of
delay of CAN transceiver. The delay is caused by output/input/parasitic
capacitance. Divider has the low number of samplings, but a low identifi-
cation rate. Thus, we improve the identification accuracy of Divider.

Limitation of Deployability for CAN-Bus Protection Dedicated to DoS

To prevent DoS attacks on CAN, some researchers have proposed protective
mechanisms. The allowlist-based mitigation method has been proposed as
one of the countermeasures. This method can disable DoS attacks with the

5

highest priority CAN ID:0x000; in other words, it passes some allowlisted
messages permanently. Hence, it is ideal for mitigating and isolating a
DoS attacker who uses both malicious IDs (e.g. the highest priority CAN
ID:0x000) and benign IDs (e.g. a CAN ID which a legitimate ECU sends).
Moreover, this method requires additional hardware; therefore, it also has
a drawback in deployability. Hence, we derive an isolable and deployable
CAN-bus protection to prevent DoS attacks on CAN.

1.4 Dissertation Contributions

1.4.1 Motivation and Approach

Security researchers confirm that DoS attacking CAN causes unexpected vehicle
behavior (e.g., disabling power steering, blocking Advanced Driver-Assistance
Systems (ADAS) function). Therefore, it is important to completely eliminate
the threat of DoS attacks on CAN. To permanently disable DoS attacks on CAN,
we study the threat of DoS attacks from two different perspectives: offense and
defense. Namely, we consider exploiting vulnerabilities for evasion attacks on
state-of-the-art DoS IDS from the attacker’s perspective. After that, we consider
three defensive approaches (detection, identification, and protection) as depicted
in Fig. 2, which can solve the problem of state-of-the-art DoS IDS.

1.4.2 Dissertation Goal and Scope

In this dissertation, we aim to disable DoS attacks from an attacker which is
based on the actual hacking of vehicles, defined by Chap. 2.4. After achieving the
dissertation goal, the security threat of spoofing and replay attacks on CAN is an
unsolved problem. However, we can tackle the problem by applying the existing
message authentications to CAN. Therefore, we define our goal that we propose
defense strategies that can prevent all attacks by combining the existing message
authentications. For this reason, we focus on defense strategies to disable all DoS
attacks because the existing message authentications can deal with spoofing and
replay attacks other than DoS attacks.

To achieve the goal, first, we explore vulnerabilities in state-of-the-art DoS
IDS to verify the capabilities of detection. Second, we derive a new detection

6

Respond

Recover
ProtectAttack Detect Identify

(i) Entropy-
manipulation

(ii) Similarity-
Based IDS (iii) PLI-TDC (iv) IVNProtect

This dissertation

and

Implemented by
automotive

suppliers/makers

To disable DoS attacks on CAN, we envision four stages: (i) derive an undiscovered DoS attack
on a state-of-the-art IDS, (ii) detect the undiscovered and previous DoS attacks effectively, (iii)
identify the compromised ECU which sends the DoS attacks, (iv) protect the CAN-bus from
DoS attacks.

Figure 2: Four dissertation components and defense flow.

approach which detects existing DoS attacks and evasion attacks on the state-of-
the-art DoS IDS. Third, we propose a PLI to accurately identify the sender ECU
of malicious messages. Finally, we develop a protection mechanism to prevent
DoS attacks in the software layer of ECU.

Here, we summarize the contributions of this dissertation.

1.4.3 entropy-manipulation attack: Evasion Attack on Entropy-Based
IDS

The main contributions of the study of Chap. 3 can be summarized as follows.

1. We found a DoS attack called the entropy-manipulation attack, which by-
passes the state-of-the-art DoS IDS (entropy-based IDS [98]) by adjusting
the entropy of messages. These consist of messages of random CAN ID.

2. We propose an injection technique to evade the detection of entropy-based
IDS at boundary between benign messages and DoS messages, which is
called Sliding Window Poisoning Tactic.

3. We confirmed that an attacker can evade the entropy-based IDS with the
entropy-manipulation attack in 6 vehicle environments.

7

1.4.4 Sliding Window Optimized Similarity Analysis Method

The main contributions of the study of Chap. 4 can be summarized as follows.

1. The proposed method (similarity-based IDS) achieved a detection preci-
sion of 100.0% against the all DoS attacks (including entropy-manipulation
attack), while the detection precision is 68.3% in the entropy-based IDS.

2. We showed that the detection time is up to 93% (14 µs) shorter than the
entropy-based IDS.

1.4.5 PLI-TDC: Physical-Layer Identification with Time-to-Digital Con-
verter for In-Vehicle Networks

The main contributions of the study of Chap. 5 can be summarized as follows:

1. We propose a PLI using Time-to-Digital Converter (TDC) which can fine
measure an elapsed time, called PLI-TDC. Our method uses new charac-
teristics in the identification of ECUs in CAN. PLI-TDC does not use con-
tinuous characteristics such as voltage, but the delay-time to be observed
in each rising edge of the CAN message. Hence, PLI-TDC can identify
the ECUs with a lower number of sampling than the voltage-domain based
method.

2. PLI-TDC achieved mean accuracy of 99.67 % and 97.04 % on CAN bus
prototype and a real-vehicle network, respectively. Additionally, we showed
that this approach achieved a 100% true positive rate against two attacker
models.

3. We designed PLI-TDC so that it can be robust against features’ drift caused
by temperature drift. From our experiment, PLI-TDC can achieve a mean
accuracy of over 99% even if the temperature is drifted.

4. PLI-TDC solved the problems of detection based on multiple frames, num-
ber of probes, and robustness against feature drift.

8

1.4.6 IVNProtect: Isolable and Traceable Lightweight CAN-Bus Ker-
nel Protection

The main contributions of the study of Chap. 6 can be summarized as follows:

1. We propose an isolable and traceable lightweight CAN-bus protection called
IVNProtect. IVNProtect is implemented to a CAN-bus kernel driver
on Linux. Hence, IVNProtect can deploy to an ECU just by software
updating.

2. We provide a new error state mechanism on IVNProtect for handling
security incidents. IVNProtect mitigates DoS attacks and isolates a
compromised ECU based on this security error state mechanism.

3. We experimentally confirm the traceability that IVNProtect reports
warning messages for legitimate ECUs to distinguish whether the cause
of isolation is a fault or a security incident.

4. We show the overhead caused by IVNProtect. As a result, the overhead
takes only 9.049 µs, which means that a system with our IVNProtect
satisfies in-vehicle real-time demands.

1.5 Outline

The rest of the dissertation is organized as follows. Chap. 2 explains all the
relevant backgrounds on CAN and its security issues. In Chaps. 3 and 4, we
detail a new DoS attack called entropy-manipulation attack and a defensive strat-
egy against it called similarity-based IDS, respectively. Next, aiming to end the
arms race between evasion attacks like entropy-manipulation attacks and defen-
sive strategies like similarity-based IDS, we propose physical-layer characteristics-
based sender identification and attacker detection called PLI-TDC in Chap. 5.
In Chap. 6, we propose a CAN-bus kernel-level protection called IVNProtect.
Finally, Chap. 7 details the impact of this research on other related fields and
elaborates the future research direction.

9

2. Controller Area Network and Its Vulnerabili-
ties

In this section, we describe the CAN which is a widely utilized in-vehicle network
protocol in modern automobiles. We also summarize the vulnerabilities of CAN.

2.1 CAN Primer

CAN is the de facto standard for in-vehicle networks, and generally works on a
bus-type network topology as shown in Fig. 3. Normally, both ends of the CAN
bus are terminated with 120 Ω resistors to prevent signal reflection. Therefore,
the value of the combined resistance of CAN is 60 Ω.

Typical CAN node consists of Micro Controller Unit (MCU), CAN controller,
and CAN transceiver. The CAN controller processes various frames according
to the CAN. The CAN transceiver converts the logical level (low and high) of
the signal and the CAN bus level (dominant and recessive) of the signal between
the CAN bus and the CAN controller. ISO 11898 [80] gives the High-Speed
CAN bus specification. The specification are given for the maximum baud rate
of 1 Mbps and the maximum bus length of 40 m with up to 30 nodes can be
connected. A twisted-pair cable is used to ensure robust noise immunity on
the CAN bus. The two wires are called CAN-L and CAN-H respectively. As
shown in Fig. 4 (a), the voltage of CAN-H/CAN-L are 3.5/1.5 V and 2.5/2.5 V
during dominant and recessive (logical 0 and 1), respectively. Also, the CAN
data frame has a maximum 8-byte data field whose length is determined by
Data Length Code (DLC) in the control field. When dominant and recessive
are transmitted simultaneously by multiple nodes, the dominant is preferentially
transmitted. Using this feature, an ECU can transmit frames with high priority
without interrupting transmission even if multiple nodes simultaneously transmit
frames and signals collide. This mechanism is called arbitration, and details are
described in Sec. 2.1.2.

Also, in this dissertation, we define "CAN message" as actual data compliant
on the data frame (Fig. 4 (b)) on CAN.

10

ECU 1ECU 0

ECU 2

MCU

CAN transceiver

CAN
controller

MCU

CAN transceiver

CAN
controller

MCU

CAN
controller

CAN transceiver

120Ω120Ω

Figure 3: Typical CAN bus.

20000 40000 60000 80000 100000
Sample

1

2

3

4

V
ol

ta
ge

[V
]

(a) An example of the CAN message (CAN-H (blue) and CAN-L (red)).

(b) Data frame on CAN.

Figure 4: A CAN message and data frame.

11

2.1.1 CAN Frame

CAN defines the following four types of frames: data frame, remote frame, error
frame, and overload frame. First, the data frame contains data itself, such as
sensor data, and is transmitted from the sender ECU to the receiver ECU. Second,
the remote frame is used by the receiver ECU to request the transmission of the
data frame. Third, the error frame is transmitted to CAN when the transmitted
logical value and the CAN differential signal are different. Finally, the overloaded
frame is used to add a delay between the previous and current data frames.
Although this frame is rarely used because the processing power of the CAN
controller and its microcomputers have improved.

The data frame consists of some fields (arbitration field, data field, etc.). In
the following, each field is described.

Start Of Frame (SOF)
This field represents the start of the frame using a dominant 1 bit.

Arbitration Field
This field consists of the 11 bit of identifier and the 1 bit of Remote Trans-
mission Request (RTR) which indicates the frame type. The 11 bit of iden-
tifier represents the priority of the frame. The lower identifier, the higher
the priority of a frame with the identifier. In this dissertation, the identifier
is called Arbitration ID (CAN ID). RTR is used to distinguishe whether a
frame is data frame or remote frame. When RTR is dominant, it represents
a data frame, else a remote frame.

Control Field
This field consists of two reserved bits called IDE and r0 and the DLC.

Data Field
This field represents that the data is transmitted. This field is a variable
length within 0–8 bytes.

Cyclic Redundancy Check (CRC) Field
This field is used to check for frame transmission errors. It consists of a
15 bit CRC and a 1 bit CRC delimiter.

12

acknowledgment (ACK) Field
This field represents acknowledgment sent by receiver ECUs. If receiver
ECUs other than an ECU transmitting a CAN message can normally receive
up to the CRC field, a 1-bit dominant transmission is performed in the ACK
slot as a signal.

End Of Frame (EOF)
The field indicates the end of a frame consisting of 7 bits of recessive.

2.1.2 Arbitration

Since CAN uses the Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) method, an ECU confirms that the CAN bus is idle before the
ECU sends a data frame, and then the other ECUs can receive the frame. If two
or more ECUs start transmission at the same timing, this collision of transmission
requests is resolved by bit-by-bit arbitration. This arbitration is performed using
the value of the Arbitration ID. Therefore, while sending the Arbitration ID, the
ECU sending the CAN message compares whether the transmitted bit and the
bit represented by the bus are the same. If the bus expresses a dominant even
though it transmitted a recessive, the ECU sending the recessive loses the right
to send and must stop sending the CAN message.

Also, if the data frame and the remote frame have the same Arbitration ID and
their transmission of them starts at the same time, the data frame is preferentially
transmitted because the RTR of the data frame is dominant.

2.1.3 Error Handling

CAN has a fault error state mechanism for high fault tolerance. The error state
mechanism defines the following three states as the state of an ECU: error active
state, error passive state, and bus-off state as shown in Fig. 5. An ECU starts
at the error active state. When the ECU detects several errors (e.g. CRC error),
it transits to the error passive state which means that the ECU cannot receive
the CAN messages on the bus. Finally, suppose the ECU still detects several
errors in the error passive state. In that case, the state of the ECU transits to
the bus-off state, where the ECU is logically isolated from the bus. Namely, the

13

Error
passive

Bus-off

Error
active

TEC > 127 or REC > 127

TEC ≤ 127 and REC ≤ 127
TEC > 255Reset

Figure 5: State diagram of CAN error state machanism.

ECU in bus-off state cannot send and receive CAN messages via the bus. Once
the ECU enters the bus-off state, the ECU conducts using reboot or a manual
procedure by diagnosis to transit to the error active state.

Also, the errors (e.g. CRC error) on CAN increase two types of counters
in an ECU: Transmit Error Counter (TEC) and Receive Error Counter (REC).
TEC in a sender ECU is counted if the sender ECU confirms the dominant (or
recessive) on the bus despite sending the recessive (or dominant) in other than
Arbitration and ACK fields. REC in a receiver ECU is counted if received CRC
data is different from CRC data calculated by a received CAN message or if a
received CAN message has the incorrect data frame. The aforementioned error
state mechanisms are managed based on TEC and REC.

2.2 Vulnerablilities of CAN

According to Liu et al. [57], CAN vulnerabilities were classified into 4 categories,
and attack methods against the vulnerabilities were classified into 5 categories.
Fig. 6 shows the classification arranged by Liu et al.

The inherent vulnerabilities of CAN are broadcast communication, no en-
cryption, no authentication, and Arbitration ID-based priority schemes. The at-

14

Applying the encryption and
authentication mechanism

Eavesdropping

Frame
Impersonation

Replay
Attacks

DoS
Attacks

Detection and
Prevention with

IDS/IPS

Attacks CountermeasuresCAN Vulnerabilities

Broadcast
Comm.

Frame Injection

No encryption

No authentication

Arb. ID Based
Priority Scheme

Figure 6: CAN vulnerabilities and the countermeasures.

tack methods caused by these are described below. First, eavesdropping exploits
broadcast communication and no encryption. Anyone who can access CAN can
eavesdrop on CAN messages because of broadcast communication and no en-
cryption. Second, in a frame impersonation, by using the eavesdropped CAN
messages, an attacker can impersonate the CAN message such as operating the
meter by impersonating the CAN message related to the vehicle speed. Third, an
attacker performs a replay attack, which is an attack that reproduces the CAN
messages transmitted by ECUs, and a frame injection that sends an arbitrary
CAN message, because CAN has no authentication. Finally, the Arbitration ID-
based priority scheme states that are vulnerable to DoS attacks, which overwhelm
the bus by sending large numbers of CAN messages that exceed the priority of
CAN messages in transmission [13]. Also, as shown in Fig. 4 (b), because the
CAN data format does not have a field to indicate the source information, the
receiver ECU cannot verify whether the CAN message was sent by the legitimate
sender ECU.

Encryption and authentication would be a countermeasure against the above
attack methods. However, since the maximum data field of CAN is 8 bytes,
authentication is not easily applicable. Furthermore, it is difficult to implement
the management of keys needed for encryption/authentication as soon as possible

15

because it is necessary for automobile manufacturers to appropriately decide and
implement key management rules. On the other hand, detection/protection by
IDS/IPS can be executed only by connecting IDS/IPS to the CAN bus, Therefore,
detection/protection by IDS/IPS has advantages in terms of effectiveness and ease
of implementation in current vehicles.

2.3 Attack Surfaces on Automotive IoT

This section describes the intrusion route of attacks from external networks. We
focus on the IVI connected to the Internet. As shown in Fig. 7, intrusions from
the outside can be roughly divided into three types: long-range, short-range,
and internal [15]. Note that a Linux-based IVI such as Automotive Grade Linux
(AGL) [24] is assumed.

First, as intrusion routes from the outside (long range), there are the High
Speed Synchronous Serial Interface (HSI) driver that handles mobile phone com-
munication and the WPA supplicant process in the user space that handles Wi-Fi
communication. If the old versions of these are installed on the IVI, an attacker
could break into the IVI. Also, if the IVI is set to automatically connect to an
access point with an SSID, an attacker could set up a malicious access point with
the same SSID and the attacker could attempt to break into various ports on the
IVI.

Second, an attacker from the outside (short range) possibly invades by exploit-
ing the vulnerability of Bluez, a daemon that performs Bluetooth communication.

Third, as a threat other than the external network, an attacker tries to let a
legitimate user connects a USB device to IVI to install malware through social
hacking. This attack can be exploited if the USB software stack is flawed or if the
IVI software is updated via USB. After exploiting the IVI system, the attacker
can attempt malware installation such as ransomware targeting vehicles [6].

Also, as a direct entry route to the CAN bus, the ECU diagnostic port On-
Board Diagnostics-II (OBD-II) port1 is used to intrude the CAN bus through
direct access [8]. In this dissertation, we conducted an evaluation experiment of
attack detection by invading from the OBD-II port.

1A diagnosis port for vehicles. Generally, it is installed around the driver’s seat.

16

HSI
Driver

CAN
Driver

USB
Driver

WPA
supplicantBluez

Kernel Level

In-Vehicle Network

External (Long-Range)

External (Short-Range)

Internal

In-Vehicle Infotainment (IVI) System

Phone Wi-Fi Devices

Bluetooth Devices

USB Devices

ECU

Figure 7: Attack surfaces to the CAN (Linux based IVI)

17

From the above, the in-vehicle network is directly or indirectly connected to
various interfaces, so that attackers can use diverse intrusion routes. Therefore,
multi-stage and multi-layered defense measures are important for security coun-
termeasures for securing automotive IoT.

2.4 Our Remote Adversary Model

In this section, we define an adversary model in in-vehicle networks. The remote
adversary model is based on the hacking of Jeep Cherokee [62] and the exploita-
tion via Wi-Fi/Bluetooth interface against Display Control Unit (DCU) installed
in some Lexus series [14]. In actual hacking of Jeep Cherokee, Miller and Valasek
exploited an ECU’s update mechanism to inject their code. After getting control
of an ECU, it is supposed that the attacker reconnoiters the CAN bus with ex-
ploration/reconnaissance tools (e.g., CaringCaribou2, CANvas Network Mapper
[50]). Thus, we suppose that the adversary model can manipulate software in
a single compromised ECU. In other words, our model cannot manipulate any
direct physical characteristics in the CAN bus. Even though our model is only
allowed to manipulate the software layer, the model is a serious threat. For in-
stance, our model with only the software layer can simultaneously conduct the
large-scale attacks for thousands of vehicles at the same time by using a single
vulnerability [49, 51]. Therefore, we suppose that the adversary model with a
single compromised ECU has all software manipulation capabilities.

2A friendly car security exploration tool, https://github.com/CaringCaribou/caringcaribou

18

3. entropy-manipulation attack: Evasion Attack
on Entropy-Based IDS

3.1 Introduction

Encryption and authentication approaches toward secure in-vehicle networks have
been proposed to prevent spoofing, sniffing, and replay attacks [52, 66, 82, 95, 92,
101, 81]. These proposals could disable traditional hacking, in which an adversary
sends a spoofed message to a specific ECU. However, even in CAN bus applied to
encryption and authentication, these proposals cannot disable a DoS attack that
sends many messages to the in-vehicle network, because DoS attacks cause a delay
to the encrypted benign messages. To disable DoS attacks, a security solution
different from encryption and authentication is necessary. In order to prevent a
DoS attack of one type in which an adversary sends messages to flood the buffer of
receiving ECU, Intrusion Prevention System (IPS) defenses have been proposed
[39, 99, 96]. However, these methods do not affect other DoS attacks, in which
an adversary sends many messages of the highest CAN ID priority. Therefore, it
is necessary to have an IPS that can prevent all DoS attacks. To prevent all DoS
attacks, firstly, we must consider a method to detect all DoS attacks.

Time-intervals IDS [88] has been proposed to detect spoofing attacks and DoS
attacks on CAN. This IDS detects DoS attacks with the cutoff of the time interval
to 0.2 milliseconds for detecting DoS messages. However, in the case of over 0.2
milliseconds of the time interval of the DoS attack’s messages, the IDS cannot
detect DoS attacks. In addition, in different baud rates such as CAN and CAN
with Flexible Data Rate (CAN-FD) [29], the IDS cannot be adapted to the CAN
buses because the time intervals of DoS attacks are different. Furthermore, some
methods [88, 31, 98] are probably only effective against the DoS attacks under
naive environments, such as some higher priority messages [53].

A machine learning approach for IDS has been proposed [54]. The approach
can widely detect attacks such as spoofing, replaying, and DoS attacks with high
accuracy. The approach (especially deep learning) is too expensive to implement
the training function in the vehicle, although the cost of inferring is reasonable.
Also, a secure OTA update [40] has been proposed in modern automotive. There-

19

fore, the cost of training the additional communication of the OTA update should
be reasonable.

Also, an entropy-based IDS [98] using the entropy of a fixed number of mes-
sages, called a sliding window, has been proposed against the DoS attacks and the
replay attacks. This method has a good advantage in terms of effectiveness and
the small computational overhead [100]. However, the entropy might be manip-
ulated by adversaries to avoid the IDS. To validate the feasibility of this attack,
we present an evasion DoS attacks called entropy-manipulation attacks against
the entropy-based IDS. Additionally, we carried out experiments in which the
attacker executed entropy-manipulation attacks on a six-vehicle environment. As
the result, we confirmed that the entropy-manipulation attacks can evade the
entropy-based IDS to mimic the entropy with higher IDs than actual IDs.

The main contributions of this study can be summarized as follows.

1. We found a DoS attack called the entropy-manipulation attack, which by-
passes the conventional method (entropy-based IDS [98]) by adjusting the
entropy of messages. These consist of messages of random CAN IDs.

2. We proposed a sliding window poisoning tactic to inject the DoS messages
to the sliding window without varying the entropy at the boundary between
the benign and DoS messages.

3. We confirmed that an attacker can evade the entropy-based IDS with the
entropy-manipulation attack in a six-vehicle environment.

3.2 Related Work

A lot of works have been done on IDSs on CAN. IDSs on CAN using deep learning
have been proposed [43, 86, 18, 19, 17, 36, 48, 70]. The approach is too expensive
to implement the training function in the vehicle although the cost of inferring
is reasonable. Also, a secure OTA update [40] has been proposed in modern
automotive. Therefore, the cost of training the additional communication of the
OTA update should be reasonable.

Time-intervals IDS [88] has been proposed to detect spoofing attacks and DoS
attacks on CAN. This IDS detects DoS attacks with the cutoff of the time interval

20

to 0.2 milliseconds for detecting DoS messages. However, in the case of over 0.2
milliseconds of the time interval of the DoS attack’s messages, the IDS cannot
detect DoS attacks. In addition, in different baud rates such as CAN and CAN-
FD, the IDS cannot be adapted to the CAN buses because the time intervals of
DoS attacks are different. Furthermore, some methods [88, 31, 98] are probably
only effective against the DoS attacks under naive environments such as some
highest priority messages [53].

Detection methods based on electrical fingerprint information have been pro-
posed [10, 44]. However, in order to perform electrical fingerprint information-
based anomaly detection, some additional hardware such as the A/D converter
is necessary. Furthermore, if an original ECU is compromised, the IDS cannot
detect a malicious message using CAN ID assigned in compromised ECU itself.

There are various other related studies, but these studies are not superior
to the entropy-based IDS in terms of effectiveness to DoS attacks and the small
computational overhead.

3.3 Entropy-Based IDS

3.3.1 Fixed Time Based Method

IDSs based on entropy in the fixed time have been proposed [69, 60].
Muter and Asaj proposed the first anomaly detection method based on information-

entropy [69]. The method uses the relative distance of entropy of each IDs between
two datasets to detect anomalies. This advantage of the method is to detect a
slight increase or decrease in the specific CAN ID. However, it also causes false
alarms because the frequency of IDs in the fixed time changes by the clock-skew
in CAN.

Next, Marchetti et al. proposed the entropy of the fixed time based anomaly
detection method [60]. They designed the anomaly detection method through
experiments in real CAN messages. However, the method has disadvantages such
as no adaptation to different baud rate, misdetection caused by aperiodic CAN
messages, and no capability of real-time detection.

21

3.3.2 Sliding Window Based Method

Wu et al. pointed out that these IDSs [69, 60] cannot be applied to different
transmission rates and aperiodic messages because they use fixed-time messages
for calculating entropies. Therefore, they proposed a novel entropy-based IDS
[98], showing that the entropy-based IDS can fastly detect DoS attacks by using
a sliding window (a fixed number of messages) for calculating the entropy. The
definition of entropy in the method is as follows, where I = {id1, id2, id3, ..., idn}
is a set of different CAN IDs appearing within sliding windows W . Equation (1)
is expressed as the entropy of CAN IDs in sliding windows W .

H(I) = −
∑

idi∈I

P (idi) log(P (idi)) (1)

Next, we explain the P (idi) in Equation (1). Since the method determines
the network state by monitoring CAN messages per window W , the total number
of messages in the arbitrary network state is the same to window W . Thus, the
total number of messages Ntotal in the sliding windows W can be obtained by
Equation (2):

Ntotal =
n∑

i=1
Countidi

(2)

The Countidi
is the number of idi appearing in W . Then the probability of

idi appearing in W can be represented as

P (idi) = Countidi

Ntotal

(3)

The definition of Equation (1), (2), and (3) is based on the entropy-based IDS
[98]. The problem with the entropy-based IDS [98] is that it has a much higher
FP rate against the entropy-manipulation attack.

3.4 Attacker Model

There are three types of DoS attacks on CAN according to the report [39] of
Humayed et al. as follows. (Also, shown in Fig. 8.)

22

0AA

10 20 30 40 50 60

000

000

000

000

000

000

000

000

000

000

000

000

Time [ms]

0BB0BB

0AA0AA

0CC

・
・
・

・
・
・

・
・
・

- Normal message

- DoS attack message

(a) Traditional DoS attack

0AA

10 20 30 40 50 60

0A9

0A0

022

04A

009

06E

07F

066

06E

074

03A

04E

Time [ms]

0BB0BB

0AA0AA

0CC

・
・
・

・
・
・

・
・
・

(b) Randomized DoS attack

0AA

10 20 30 40 50 60

0AA

0AA

0AA

0AA

0AA

0AA

0AA

0AA

0AA

0AA

0AA

0AA

Time [ms]

0BB0BB

0AA0AA

0CC

・
・
・

・
・
・

・
・
・

(c) Targeted DoS attack

Figure 8: The classification of DoS attacks on CAN.

23

3.4.1 Traditional DoS Attack

An adversary can easily interfere with a CAN bus by using bitwise arbitration.
Since the lower CAN ID has a higher priority, the adversary would use CAN
ID 0x000 for the DoS attack. As a result, the adversary can induce unexpected
behavior of the vehicle. Though it is not difficult to detect the Traditional DoS
attack, IDSs must detect it as soon as possible.

3.4.2 Randomized DoS Attack

A randomized DoS attack is the most appropriate attack for broadcasting incor-
rect values without investigating an in-vehicle network. Messages with a random
CAN ID from 0 to 2047 can be transmitted within one second, even on a low-
speed network. The difficulty of the detection of the randomized DoS attack is
the same with Traditional DoS attacks and should be detected as soon as possi-
ble too. An entropy-based IDS can detect randomized DoS attacks of both low
and high entropy. However, the entropy-based IDS cannot detect an entropy-
manipulation attack in which an adversary adjusts the entropy of a DoS attack
to a benign entropy. For example, in case of the sliding window W = 30, en-
tropies of two sliding windows are the same value if a sliding window includes
10 messages of normal CAN IDs 0x0AA, 0x0BB, and 0x0CC, respectively, and a
sliding window includes 10 messages of the DoS message’s IDs 0x000, 0x001, and
0x002, respectively. If an attacker exploits the entropy-manipulation attack, the
attacker can bypass the entropy-based IDS. The conditions that an attacker must
satisfy are as follows.

1. Knowing the hyperparameters of entropy-based IDS such as window size
and average entropy.

2. Existence of Higher priority CAN IDs than actual CAN IDs.

Here, we describe whether an attacker satisfies condition 1. Firstly, after an
attacker intruded an ECU from some external network, the attacker sniffs the
messages of the CAN bus. And then, the attacker can calculate the hyperparam-
eters of window size and the average entropy using the same algorithm to the
entropy-based IDS. Finally, the entropy-manipulation attack is carried out using

24

the window size and average entropy. IDS should assume adversaries know the
algorithm inside it [23].

To confirm the satisfaction of condition 2, we surveyed whether there are these
IDs with collecting CAN data of 6 car models in Sec. 3.5.2. Therefore, we explain
the detail of condition 2 in the section.

3.4.3 Targeted DoS Attack

A Targeted DoS attack influences buses and ECUs. In this research, we assume
an attack on one ECU and define it as a DoS attack using one ID flowing on the
bus. This DoS attack could have life-threating consequences for the driver and
passengers. However, entropy-based IDS can be used to achieve to detect this
DoS attack.

3.5 Feasibility of entropy-manipulation attack

3.5.1 Root Cause of Evasion Attack

We show the example of the entropy-manipulation attack. Fig. 9 illustrates our
test car’s temporal change of entropy against two randomized DoS attacks. Fig.
9 (a) and (b) are randomly generated by randomized DoS attacks with CAN IDs
of a range of [0, 0d2047] and [0, 0d55] respectively. From Fig. 9 (a), we
confirm that the entropy-based IDS can distinguish the normal CAN messages
and randomized DoS attacks of the extremes of entropy. Fig. 9 (b) shows that
the entropies of normal messages and randomized DoS attacks are the same value.
This attack is an entropy-manipulation attack. Also, Fig. 10 shows the entropy
of randomized DoS attacks under the various ranges of CAN IDs. It shows that
an adversary can inject a randomized DoS attack using arbitrary entropy. If
the entropy of a randomized DoS attack and the entropy of normal traffic are
the same value, like Fig. 9 (b), an adversary can bypass the entropy-based IDS.
This problem is caused by that the entropy defined by [98] is based only on the
randomness of the CAN ID. In other words, an adversary can configure sliding
windows with the same randomness with completely different CAN IDs which
are higher priority than normal CAN messages. Therefore, to detect the entropy-
manipulation attacks and the other DoS attacks, we consider an approach that

25

0 50 100 150 200 250 300 350 400
Window

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

En
tro

py

Benign
Ramdomized DoS [0, 2047]

(a) Randomized DoS attacks with the range of [0, 0d2047]

0 50 100 150 200 250 300 350 400
Window

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

En
tro

py

Benign
Ramdomized DoS [0, 55]

(b) Randomized DoS attacks with the range of [0, 0d55]

Figure 9: Vulnerability of the entropy-based IDS.

26

0 500 1000 1500 2000
CAN ID Range of Randomized DoS [0, x]

0

1

2

3

4
En

tro
py

average

Figure 10: Entropy of randomized DoS attack under different CAN ID range.

can detect the entropy-manipulation attacks based on whether a CAN IDs’ set
in a sliding window is a normal range.

3.5.2 Higher Priority IDs than Actual IDs

To realize the entropy-manipulation attack, it is necessary to use the higher pri-
ority IDs than the actual IDs. We survey whether there are these IDs with
collecting CAN data of 6 car models. Table 1 shows the top 10 priority IDs of
each real-vehicles. The highest priority IDs in the vehicle A, B, and D are 0x101,
0x215, and 0x114, respectively. Hence, an attacker can exploit at least the ran-
dom IDs of [0, 0x101] to perform the entropy-manipulation attack on these
vehicles. On the other hand, the highest priority IDs in the vehicle of HCR Lab,
C, and E are 0x018, 0x002, and 0x020, respectively. In the case of these vehicles,
an attacker might not be able to do the entropy-manipulation attack because the
high priority IDs are assigned as benign IDs. Thus, to mitigate this problem, the
attacker can change the attack targets to IDs of 2nd place and below.

Table 2 shows the entropy of each vehicles’ data and the entropy of DoS

27

Table 1: Top high priority IDs in real-vehicles.

HCR Lab [55] Vehicle A B C D E

1st 0x018 0x101 0x215 0x002 0x114 0x020
2nd 0x034 0x151 0x216 0x0D0 0x116 0x024
3rd 0x043 0x152 0x280 0x0D1 0x119 0x025
4th 0x050 0x154 0x2DE 0x0D2 0x120 0x0AA
5th 0x080 0x1D0 0x351 0x0D4 0x122 0x0B4
6th 0x0A0 0x1D1 0x355 0x140 0x124 0x127
7th 0x110 0x200 0x358 0x141 0x130 0x1C4
8th 0x120 0x208 0x35D 0x144 0x131 0x224
9th 0x153 0x210 0x615 0x148 0x13F 0x230
10th 0x164 0x212 0x5C5 0x149 0x180 0x245

attack using the random IDs of the range up to the 1st and 2nd priority of each
vehicle. In the vehicle A, if the entropy of the DoS attack using IDs up to the 1st
priority is greater than the entropy of the vehicle, the attacker can perform the
entropy-manipulation attack interrupting all messages of benign IDs. Therefore,
the attacker can perform the entropy-manipulation attack. Also, in vehicle HCR
Lab and C, the entropy of the vehicle is greater than the entropy of the DoS attack
using IDs up to the 1st priority. However, the entropy of the vehicle is not greater
than the entropy of the DoS attack using IDs up to the 2nd priority. In other
words, the attacker can carry out the entropy-manipulation attack interrupting
the messages of benign IDs except for the highest benign ID.

To sum up this section, we conclude that in 4 out of 6 vehicles the attacker
can perform DoS attacks using the higher priority IDs than the actual IDs, while
in the remaining 2 vehicles the attacker can execute DoS attacks using the higher
priority IDs than the part of actual IDs.

3.5.3 Sliding Window Poisoning Tactics

Here, we describe how an attacker poisons the sliding window without changing
the entropy. We envisage that the entropy increases in the boundary between

28

Table 2: Comparison of average entropies of real-vehicle’s CAN data and Ran-
domized DoS attacks using available ranges.

Average Entropy

HCR Lab 3.05408
[0, 0x018] 2.99363
[0, 0x034] 3.46754

A 3.28269
[0, 0x101] 3.94616
[0, 0x151] 3.97857

B 2.09613
[0, 0x215] 4.01927
[0, 0x216] 4.01904

C 3.25292
[0, 0x002] 1.08202
[0, 0x0D0] 3.91271

D 3.41602
[0, 0x114] 3.95546
[0, 0x116] 3.95483

E 2.88480
[0, 0x020] 3.18932
[0, 0x024] 3.26292

29

benign and DoS messages. For example, if the sliding window contains half of
the benign and half of the DoS messages, the randomness of IDs increases. As a
result, the entropy increases in the boundary between benign and DoS messages.
Therefore, we propose a tactic that an attacker can poison the sliding window
without changing the entropy.

First, we confirm whether the entropy increases in the boundary between
benign and DoS messages. Fig. 11 shows that the entropy and CAN ID range of
Randomized DoS during sliding window poisoning tactic with static range [0,
0d55]. From Fig. 11 (a), we can confirm that the entropy exceeds the benign
area around 30 of the number of injected messages. This exceedance is caused
by high random degree of CAN ID range of randomized DoS around 30 of the
number of injected messages. Thus, next, we try the sliding window poisoning
tactic with liner growth. As with Fig. 11, Fig. 12 show that the entropy and
CAN ID range of randomized DoS. From Fig. 12 (a), we confirm that the increase
of entropy is slightly mitigated. However, the entropy still exceeds the benign
area. Finally, as shown in Fig. 13, we grow the CAN ID range with non-linear.
Fig. 13 (a) shows that the entropy is not exceeded the benign area because the
CAN ID range of randomized DoS is carefully increased.

From this comparison of poisoning tactics, we conclude that the sliding win-
dow poisoning tactic with non-linear growth can poison the sliding window with-
out changing the entropy.

3.6 Evaluation

3.6.1 Entropy of Real-Vehicles

In this study, we evaluate the detection capabilities of entropy-based IDS against
entropy-manipulation attacks. We use a data set of the real CAN messages
provided in [55] and a data set of the five vehicles (A, B, C, D, E) which we
logged during driving and stopping. We evaluate the entropy-based IDS using
the DoS attack messages (1000 messages) added to the data sets without DoS
attack messages.

Table 3 shows the dataset description. We describe the average value Have

and the standard deviation Hdev of the entropy at the sliding window W = 60,

30

0 10 20 30 40 50 60
of Injected Messages

3.0

3.2

3.4

3.6

3.8

4.0
En

tro
py

DoS
Benign

(a) Entropy during the sliding window poisoning tactic.

0 10 20 30 40 50 60
of Injected Messages

0

10

20

30

40

50

60

CA
N

ID
 R

an
ge

 o
f R

an
do

m
ize

d
Do

S
[0

, y
]

(b) CAN ID range of randomized DoS during the sliding window poi-
soning tactic.

Figure 11: Sliding window poisoning tactic (static range [0, 0d55]).

31

0 10 20 30 40 50 60
of Injected Messages

3.0

3.2

3.4

3.6

3.8

4.0
En

tro
py

DoS
Benign

(a) Entropy during the sliding window poisoning tactic.

0 10 20 30 40 50 60
of Injected Messages

0

10

20

30

40

50

60

CA
N

ID
 R

an
ge

 o
f R

an
do

m
ize

d
Do

S
[0

, y
]

(b) CAN ID range of randomized DoS during the sliding window poi-
soning tactic.

Figure 12: Sliding window poisoning tactic (linear growth).

32

0 10 20 30 40 50 60
of Injected Messages

3.0

3.2

3.4

3.6

3.8

4.0
En

tro
py

DoS
Benign

(a) Entropy during the sliding window poisoning tactic.

0 10 20 30 40 50 60
of Injected Messages

0

10

20

30

40

50

60

CA
N

ID
 R

an
ge

 o
f R

an
do

m
ize

d
Do

S
[0

, y
]

(b) CAN ID range of randomized DoS during the sliding window poi-
soning tactic.

Figure 13: Sliding window poisoning tactic (non-linear growth).

33

Table 3: Data set description.

Name Normal messages Have Hdev

HCR Lab 1000 3.05408 0.08345
A 1000 3.28269 0.06991
B 1000 2.09613 0.04416
C 1000 3.25292 0.07083
D 1000 3.41602 0.11795
E 1000 2.88480 0.12877

which was regarded as the optimal parameter in the entropy-based IDS [98]. The
entropies depend on the vehicle. Therefore, when these normal entropies and the
entropies of randomized DoS attacks are the same value, the detection accuracy
of the entropy-based IDS decreases.

We evaluate the proposed attack method with three metrics. The first is the
recall of entropy-based IDS under entropy-manipulation attacks. In this evalu-
ation, we confirm whether entropy-manipulation attacks can evade the entropy-
based IDS in 6 vehicles. The second is the precision of manipulation-aware
entropy-based IDS. We test the scenario that the entropy-based IDS learns entropy-
manipulation attacks as DoS attacks. The third is the evasive performance of
sliding window poisoning tactics of entropy-manipulation attacks. We validate
the three poisoning tactics using real CAN traffic.

3.6.2 Recall of Entropy-Based IDS under entropy-manipulation attacks

In this section, we evaluate the recall of entropy-based IDS during entropy-
manipulation attacks. In this evaluation, we validate the scenario that the
entropy-based IDS learns DoS attacks with 0x000 messages. In other words,
the entropy-based IDS cannot learn entropy-manipulation attacks in order that
we test the manipulation-unaware entropy-based IDS.

Fig. 14 shows that the recall of entropy-based IDS against entropy-manipulation
attacks in each vehicle. From Fig. 14, we confirm that there is attacks with the
recall of 0.0 % in each vehicle. This implies that entropy-manipulation attacks

34

0 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 95 12
7

25
5

51
1

10
23

15
35

20
47

CAN ID Range of Randomized DoS [0, x]

0

10

20

30

40

50

60

70

80

90

100

Re
ca

ll
[%

]

HCR Lab
A
B
C
D
E

Figure 14: Recall of entropy-based IDS against entropy-manipulation attacks.

could completely evade the entropy-based IDS. We also evaluated the precision,
but most of the precision was 0.0 % because IDS rarely classifies as an attack
label. Therefore, we conclude that entropy-manipulation attacks can evade the
entropy-based IDS in all vehicles.

3.6.3 Precision of Manipulation-Aware Entropy-Based IDS

In this section, we validate the precision of manipulation-aware entropy-based
IDS. In other words, the entropy-based IDS can learn entropy-manipulation at-
tacks in off-line learning phase. Fig. 15 shows that the precision of manipulation-
aware entropy-based IDS against entropy-manipulation attacks. We confirm that
the entropy-based IDS has a range in which the precision decreases. We show

35

0 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 95 12
7

25
5

51
1

10
23

15
35

20
47

CAN ID Range of Randomized DoS [0, x]

0

10

20

30

40

50

60

70

80

90

100

Pr
ec

isi
on

 [%
]

HCR Lab
A
B
C
D
E

Figure 15: Precision of manipulation-aware entropy-based IDS against entropy-
manipulation attacks.

36

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

CAN ID Range of Randomized DoS [0, x]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

En
tro

py

HCR Lab
A
B
C
D
E

Figure 16: Entropy of entropy-manipulation attack under different CAN ID range
[0, 0]-[0, 0d100].

the entropy in the entropy-manipulation attack under different CAN ID ranges
in Fig. 16, which shows a correspondence between the entropy and the CAN
ID range of entropy-manipulation attacks. Fig. 16 plots the 100 entropies of
entropy-manipulation attacks in each range with the boxplots. Furthermore, we
depict the 6 lines which express the average entropies of each vehicle in Fig. 16.
Focusing on the vehicle D in Fig. 15, the precision of the entropy-based IDS
has decreased in the range [0, 0d59]. Next, when focusing on the x-axis [0,
0d59] in Fig. 16, the average entropy of vehicle D is within the entropy of the
entropy-manipulation attack in the range [0, 0d59]. Because the entropy of the
entropy-manipulation attack and the average benign entropy are the same value,
the entropy-based IDS cannot detect the entropy-manipulation attack with high

37

Table 4: Evasive performance during the each poisoning tactic.

TPR[%] FPR[%] FNR[%] TNR[%] Precision[%] Recall[%]

static 66.7 53.3 33.3 46.7 55.6 66.7
linear 26.7 33.3 73.3 66.7 44.4 26.7

non-linear 0.0 0.0 100.0 100.0 - 0.0

precision. The same applies to other vehicles. Hence, we confirmed that the
precision decreases when the average entropy used in detecting DoS attacks is
within the range of the entropy of the entropy-manipulation attack.

3.6.4 Evasive Performance during Sliding Window Poisoning Tactics

As described in Sec. 3.5.3, we propose the three poisoning tactics. In this section,
we evaluate these poisoning tactics. Table 4 shows the evasive performance during
the each poisoning tactic.

As shown by Table 4, the poisoning tactic with randomized DoS of static range
can be detected by IDS with a precision of 55.6 %. As with the static range, the
poisoning tactic with linear growth range can be detected with a precision of
44.4 %. However, the poisoning tactic with non-linear growth range can evade
the IDS because of a precision of 0.0 %. Therefore, we conclude that the sliding
window poisoning tactic with non-linear growth can poison the sliding window
without changing the entropy.

3.7 Discussion

3.7.1 Feasibility of Evasion Attack on Entropy-Based IDS

To realize entropy-manipulation attacks, some higher priority IDs than actual
IDs are required. In Sec. 3.5.2, we surveyed whether there are high priority IDs
enough to manipulate the entropy. As the result, we have confirmed that there
are higher priority IDs than actual IDs in the six-vehicles.

Besides, we proposed sliding window poisoning tactics in order to inject the
DoS messages to benign windows. The proposed poisoning tactics can inject the

38

DoS messages to the sliding window without changing the entropy.
From the existence of higher priority IDs than actual IDs and the effectiveness

of sliding window poisoning tactics, we conclude that an attacker can perform
entropy-manipulation attacks in real-vehicle’s environments.

3.7.2 Detection of entropy-manipulation attacks

The proposed evasion attack can be detected by monitoring the time-intervals of
each CAN ID, however a remote attacker can mimic the time-interval of CAN ID
as with the entropy. Moreover, the time-interval based IDS has a problem that
the IDS cannot apply to aperiodic messages. In order to overcome this problem
of time-interval based IDS, the entropy-based IDS also has been proposed. Thus,
even if the time-interval based IDS can detect entropy-manipulation attacks, the
problem of aperiodic messages reoccurs.

On the other hand, a sender identification method based on ECU-specific
characteristics such as voltages (VIDS) has been proposed [44, 46, 84]. The
VIDS can detect entropy-manipulation attacks because the attacks cause a lot of
messages of the same sender. However, in case that the highest ID is assigned
to a compromised ECU, a DoS attack that interrupts the transmission of other
messages is feasible. This attack cannot be detected by VIDS because a legitimate
ECU performs a DoS attack with a legitimate ID.

To detect entropy-manipulation attacks and other DoS attacks, it is possible to
implement an IDS based on similarity rather than the entropy of sliding windows.
Since the similarity-based IDS is extended to inheriting the characteristics of the
applicability to different baud rate and aperiodic messages of the entropy-based
IDS, the problem of time-interval based IDS cannot occur. Therefore, we will
propose the similarity-based IDS in Chap. 4.

3.8 Conclusion

To develop the security mechanism for automotive networks, entropy-based IDS
has been proposed. This IDS can fastly detect DoS attacks and can be imple-
mented at a low cost. However, we found a vulnerability against the entropy-
based IDS, which is called entropy-manipulation attack. The proposed attack

39

can completely evade the manipulation-unaware entropy-based IDS. In addi-
tion, even in the case that the IDS is aware of the manipulation, the entropy-
based IDS only can detect the proposed attack with a precision of 54.62%.
We also released the demonstration of entropy-manipulation attacks at https:
//youtu.be/pbRVXO4RnlM.

40

https://youtu.be/pbRVXO4RnlM
https://youtu.be/pbRVXO4RnlM

4. Sliding Window Optimized Similarity Analy-
sis Method against entropy-manipulation at-
tack

4.1 Introduction

In Chap. 3, we discovered the entropy-manipulation attacks which can evade the
entropy-based IDS to mimic the entropy with higher IDs than actual IDs. To
solve this problem, we aim to detect the entropy-manipulation attack and the
other DoS attacks with the proposed method. The entropy-based IDS focuses
only on degree of disorder of CAN IDs in a sliding window, but the IDS does
not focus on the individual values of CAN IDs in a sliding window. In other
words, even though the CAN IDs in a sliding window are completely different
and have the same degree of disorder, the entropy is the same value. Therefore,
the entropy-manipulation attack can bypass the entropy-based IDS. Hence, in
the proposed method, in order to detect anomalies based on degree of disorder
of CAN IDs and the individual values of CAN IDs in a sliding window, we use
similarity of two sliding windows. One of the two sliding windows is composed
of CAN IDs (WIDs; Window IDs) which are actually received, and the other is
composed of normal CAN IDs (CIDs; Criterion IDs) which serves as a criterion
to calculate the similarity. Our proposed method calculates the similarity in
WIDs and CIDs using the Simpson coefficient, which expresses the similarity
between the sets. Also, CIDs is generated as optimized parameter using the
Simulated Annearing (SA) algorithm in the proposed method. In addition, in
order to optimize the anomaly detection precision and execution time, we use the
SA algorithm, which obtains a good local solution using the above algorithm of
entropy-based IDS.

The main contributions of this study can be summarized as follows.

1. The proposed method (similarity-based IDS) achieved a detection preci-
sion of 100.0% against the above type of DoS attacks, while the detection
precision is 68.3% in the conventional method.

2. We showed that the execution time is up to 93% (14µs) shorter than the

41

𝐶𝐼𝐷𝑠	:
Criterion IDs

Benign Message (ID=0x080)

Benign Message (ID=0x153)
Benign Message (ID=0x081)

Benign Message (ID=0x43f)

Benign Message (ID=0x2b0)
Benign Message (ID=0x18f)

Benign Message (ID=0x080)

DoS Message (ID=0x000)

Benign Message (ID=0x080)
DoS Message (ID=0x000)

DoS Message (ID=0x000)

DoS Message (ID=0x000)
DoS Message (ID=0x000)

DoS Message (ID=0x000)

High Similarity Low Similarity>

𝑊𝐼𝐷𝑠 :
Window IDs

0x080
0x081

0x18f0x153
0x2b0

0x2a0
0x1d1Calcu

late

sim
ilarity

Calculate
similarity

Figure 17: An example of WIDs and CIDs.

conventional method.

4.2 Similarity-Based IDS against Various DoS Attacks

As aforementioned in Sec. 4.1, in order to detect anomalies based on the degree
of randomness of CAN IDs and the individual values of CAN IDs in a sliding
window, we propose an IDS based on the similarity of the sliding windows rather
than the entropy of the sliding windows. Our similarity-based IDS calculates the
similarity in WIDs and CIDs using the Simpson coefficient, which expresses
the similarity between the sets. Fig. 17 shows an example of WIDs and CIDs.
As shown in Fig. 17, our similarity-based IDS detects DoS attacks based on
the similarity between WIDs and CIDs. In addition, in order to optimize the
anomaly detection precision and detection time, we use the SA algorithm. The
SA algorithm is used to obtain a good local solution, so that the entropy-based
IDS [98] indicated the effectiveness of the SA algorithm.

Detection time is an important evaluation metric because fast detection can
conduct intrusion preventions (e.g. ID-Hopping Mechanism [39, 99, 41], Reactive
Defense Mechanism [34], Firewall [38, 56], Client-Side Enforcement [77]) rapidly.
Therefore, we consider decreasing the detection time.

42

4.2.1 Definition of Similarity

Our similarity-based IDS calculates the similarity in WIDs and CIDs using the
Simpson coefficient (often called the Overlap coefficient), which expresses the
similarity between the sets. If the two sets have an intersection, the Simpson
coefficient of the two sets is higher than the Jaccard coefficient and the Dice
coefficient. Also, since some non-cyclic messages are sent in CAN, similarity
decreases even in normal messages. Therefore, if a part of the two sets is not
shared such as non-cyclic messages, the Simpson coefficient that the decreasing
of similarity is most low is the most suitable similarity in CAN.

The definition of similarity in CAN is as follows. Equation (4) is used to
calculate the similarity between CIDs and WIDs in CAN, where CIDs are a
set of bases to calculate the similarity, and WIDs are a set of CAN IDs in a
sliding window, W , of a fixed number of messages.

overlap(CIDs, WIDs) = |CIDs ∩WIDs|
min(|CIDs|, |WIDs|)

(4)

If we use normal CAN messages to calculate the similarity, CIDs and WIDs

probably possess several elements of the same CAN ID. Due to this fact, CIDs

and WIDs are multisets. Moreover, Equation (4) can be transformed into Equa-
tion specified in (5) because |CIDs| and |WIDs| are always same as |W |.

overlap(CIDs, WIDs) = |CIDs ∩WIDs|
|W |

(5)

We use Equation (5) to calculate the similarity in the proposed similarity-
based IDS. Also, note that |W | is a constant value in the On-line detection phase,
if the denominator of Equation (5) is incremented whenever a CAN message is
received, the Overlap coefficient can be calculated in O(1). It is a smaller value
than O(log(|N |)) of the entropy calculation of the entropy-based IDS, where N

is the number of unique CAN ID included in a sliding window.
Next, we measure similarity under different sliding windows as a preliminary

experiment, in which we used preliminary CAN messages that are composed of
1000 messages of both normal and DoS attacks. These preliminary CAN messages

43

of the first half are normal ones, and the rest is the DoS attack messages of CAN
ID 0x000. We use CAN IDs optimized by the Off-line learning phase as CIDs to
calculate similarity. From the experiments, the Off-line learning phase optimally
selects a sliding window size in the range of [0d5, 0d50].

4.2.2 Framework of Similarity-Based IDS

The similarity-based IDS has two phases, an Off-line learning phase and an On-
line detection phase (Fig. 18).

44

St
ep

 1
R

ea
d

C
AN

 m
es

sa
ge

on

lin
e

O
ff-

lin
e

Le
ar

ni
ng

 P
ha

se

C
al

cu
la

te
 th

e
si

m
ila

rit
y

be
tw

ee
n

𝑊
𝐼𝐷
𝑠(
=
𝑊
')

an
d

𝐶𝐼
𝐷𝑠

In
 n

or
m

al

ra
ng

e
?

D
et

ec
t

At
ta

ck

O
n-

lin
e

De
te

ct
io

n
Ph

as
e

R
ea

d
M

es
sa

ge
Ex

tra
ct

C
AN

 ID
In

 n
or

m
al

ra

ng
e

?

C
om

pl
ia

nt
 w

ith

th
e

sl
id

in
g

w
in

do
w

 s
iz

e?

Pr
oc

es
s

ne
xt

 in
pu

t

C
al

cu
la

te
 th

e
si

m
ila

rit
y

be
tw

ee
n

bl
oc

k	
𝑊
*a

nd
 𝐶
𝐼𝐷
𝑠

Pr
oc

es
s

ne
xt

 in
pu

t

D
et

ec
t

At
ta

ck

C
AN

m

es
sa

ge

in
pu

t
Ye

s

N
o

Ye
s

N
o

C
al

cu
la

te

ac
cu

ra
cy

an

d
er

ro
r

ra
te

N
o

Ye
s

R
an

do
m

ly
 g

en
er

at
e

th
e

ne
xt

 s
et

pa

ra
m

et
er

(𝜎
,
, 𝑊

)

・・・

N
or

m
al

M

es
sa

ge

Bl
oc

k
𝑊
-

N
or

m
al

M

es
sa

ge

Bl
oc

k
𝑊
.

At
ta

ck
M

es
sa

ge

Bl
oc

k
𝑊
,/
0

𝑗=
 e

nd
 ?

N
o

In
cr

em
en

t 𝑖
𝐶𝐼
𝐷𝑠

=
𝑊
*

Ye
s

St
ep

 1
Ex

tra
ct

 ID
s

Ex
tra

ct
C

AN
 ID

fro

m
 𝑊

'

St
ep

 2
 C

al
cu

la
te

th

e
si

m
ila

rit
y

va
lu

e
St

ep
 3

 J
ud

ge
 w

he
th

er
 th

e
si

m
ila

rit
y

is
 w

ith
in

 th
e

no
rm

al
 ra

ng
e

St
ep

 4
 G

en
er

at
e

th
e

ne
xt

 p
ar

am
et

er

St
ep

 5
 T

ry
 a

ll
𝐶𝐼
𝐷𝑠

St
ep

 1
~4

St
ep

 2
 C

al
cu

la
te

th

e
si

m
ila

rit
y

va
lu

e

St
ep

 3
 J

ud
ge

 w
he

th
er

 th
e

si
m

ila
rit

y
is

 w
ith

in
 th

e
no

rm
al

 ra
ng

e

Fi
gu

re
18

:
Fl

ow
of

th
e

sim
ila

rit
y-

ba
se

d
ID

S.

45

In the first phase, the SA algorithm is used to collect optimal parameters; in
the later phase, we detect anomalies by using the optimal parameters collected
in the first phase.

1. Off-line learning phase
The Off-line learning phase mainly includes the following steps.

• Step 1: Extract the CAN IDs from learning traffic.

• Step 2: Calculate the similarity between WIDs and CIDs. WIDs

are a set of CAN IDs of a certain window. CIDs are a set of normal
CAN IDs defined for intrusion detection. Also, CIDs serves as a
criterion to calculate the similarity.

• Step 3: Judge whether the similarity (details are shown in Section
4.2.1) calculated in Step 2 falls within the normal range randomly
generated by the SA algorithm.

• Step 4: Select the new deviation of the normal range and the sliding
window for the next loop.

• Step 5: Try all the CIDs in the CAN messages for learning after
that determine the CIDs to calculate the best score. Steps 1-4 are
designed based on the SA algorithm. Step 5 is designed to try all the
CIDs through steps 1-4 for high accuracy.

2. On-line detection phase
The On-line detection phase mainly includes the following steps.

• Step 1: Read a CAN message on-line and collect messages until the
number of messages is the same as the size of the sliding window.

• Step 2: Calculate the similarity between WIDs and CIDs.

• Step 3: Judge whether the similarity calculated in Step 2 falls within
the normal range generated in the Off-line learning phase.

4.2.3 On-Line Detection Phase

The proposed algorithm used for the On-line detection phase is depicted in Al-
gorithm 1. In the algorithm, I is a set of CAN IDs from one sliding window

46

Algorithm 1 Similarity-Based Intrusion Detection Algorithm (On-line detection
phase)
Input: I ⇐ {message1, message2, ..., messageW}, k, σs, W, CIDs

1: us ⇐ 0.8
2: while True do
3: WIDs⇐ extract_CANID(I)
4: Calculate similarity S according to overlap(WIDs, CIDs) based on Equa-

tion (5)
5: if S not in normal range [us − kσs, us + kσs] then
6: Detect DoS attacks
7: end if
8: end while

W . The remaining parameters are optimized in the Off-line learning phase. Dur-
ing the On-line intrusion detection phase, the in-vehicle network is monitored in
real-time in units per sliding window, W .

The details of the On-line detection phase are as follows:

1. In line 1, we define the average of similarity us = 0.8. This average has
been measured by the result of the average similarity of six car models.

2. In lines 2-4, we calculate the similarity value in sliding window W .

3. In lines 5-7, we judge whether the similarity value is within the normal
range.

As described in Section 4.2.1, the time complexity in calculating similarity is
O(1). Thus, the time complexity of Algorithm 1 is O(|W |).

4.2.4 Off-Line Detection Phase

As a parameter for evaluating our similarity-based IDS, we used precision TP/(TP+FP)
(True Positive: TP, False Positive: FP). We selected this precision because it gives
the main indicators in the IDS. The detection rate of attack messages RA (TP
rate) is calculated according to equation (6).

47

RA(%) = DA

TA

× 100 (6)

where TA is the total number of DoS attack blocks, DA is the detected number
of DoS attack blocks. Moreover, the detection error rate of attacks RN (FP rate)
is calculated according to equation (7).

RN(%) = DN

TN

× 100 (7)

where TN is the total number of normal message blocks, DN is the number of
normal message blocks detected incorrectly as attacks by the IDS. Also, if the
number of normal messages is greater than the number of DoS messages, the
block is labeled as normal.

The proposed algorithm used for the Off-line learning phase is depicted in
Algorithm 2 and 3.

Algorithm 2 is the algorithm added to calculate precision to Algorithm 1 for
the Off-line learning phase. The Test_Data of input parameters in Algorithm 2
represents the CAN message chronologically sequenced, including the DoS attack
blocks. We employ the SA algorithm to optimize parameters in the Algorithm 3.
The energy function used in the SA algorithm is as follows.

E() = C1 ×RA(%)− C2 ×RN(%)− C3 ×W (8)

where E() represents the efficiency of the TP rate, the FP rate, and the detection
time. E() is based on Equations (6), (7), and sliding window W . Three weighted
parameters C1, C2, C3 are used to adjust the weights to the characteristics of IDS.
To get high precision and fast detection time, we set C1 = 1.0, C2 = 0.5, C3 = 2.0,
which are the same values as in the entropy-based IDS [98] and the sliding window
W is in the range of [5, 0d50].

The Learning_Data_with_DoS_attack of input parameters in Algorithm 3
represents the CAN messages of time sequence, including the DoS attack blocks.
The I is a set of one sliding window W . Algorithm 3 optimizes σs, W , and
CIDs to achieve high precision and fast detection. (σs, W)_set is randomly

48

Algorithm 2 Modified Similarity-Based Intrusion Detection Algorithm for Off-
line Learning Phase
Input: Test_Data, I ⇐ {message1, message2, ..., messageW}, k, σs, W, CIDs

Output: Precision RA

RA+RN

1: us ⇐ 0.8
2: while I in Test_Data do
3: WIDs⇐ extract_CANID(I)
4: Calculate similarity S according to overlap(WIDs, CIDs) based on Equa-

tion (5)
5: if S not in normal range [us − kσs, us + kσs] then
6: if The window include number of malicious messages greater than num-

ber of normal messages then
7: DA+ = 1
8: else
9: DN+ = 1

10: end if
11: end if
12: end while
13: Calculate TP rate RA and FP rate RN , based on Equation (6) and and

Equation (7)
14: return Precision RA

RA+RN

49

Algorithm 3 Sliding Windows Optimization Algorithm (Off-line learning phase)
Input: Learning_Data_with_DoS_attack,

I ⇐ {message1, message2, ..., messageW}
Output: (σs, W)_setmax, CIDsmax

1: function neighbor(σs, W)
2: return random(σ − 0.5, σ + 0.5), random(W − 10, W + 10)
3: end function
4: function probability(e1, e2, T)
5: return exp (−(e2−e1

T
))

6: end function
7: while I in Learning_Data_with_DoS_attack do
8: CIDs⇐ extract_CANID(I), k ⇐ 0.8, T ← 10000, cool← 0.99
9: σs_best⇐ σe0, W_best⇐ W0, ebest ⇐ E((σs, W)_set0, CIDs)

10: while T > 0.0001 and ebest > e do
11: (σs, W)_setnext ⇐ neighbor((σs, W)_set)
12: enext ⇐ E((σs, W)_setnext, CIDs) Calculated by Algorithm_2

(Learning_Data_with_DoS_attack, k, (σs, W)_setnext, CIDs)
13: p = probability(e, enext, T)
14: if random() < p then
15: (σs, W)_set⇐ (σs, W)_setnext; e⇐ enext

16: if e > ebest then
17: (σs, W)_setbest ⇐ (σs, W)_set; ebest ⇐ e

18: end if
19: end if
20: T ⇐ T × cool

21: end while
22: precisionbest ⇐ Algorithm_2

(Learning_Data_with_DoS_attack, k, (σs, W)_setbest, CIDs)
23: if precisionmax < precisionbest then
24: precisionmax ⇐ precisionbest, (σs, W)_setmax ⇐ (σs, W)_setbest,
25: CIDsmax ⇐ CIDs

26: end if
27: end while
28: return (σs, W)_setmax, CIDsmax

50

generated, where σs is the deviation, k is the sensitivity deviation, and us is the
average similarity value. The sensitivity deviation k is 0.8 the same as the average
similarity value. The purpose of Algorithm 3 is to obtain the parameter settings
that can effectively maximize E(). The details of the Off-line learning phase are
as follows:

1. In lines 1-6, functions neighbor() and probability() are defined and later
used in lines 17 and 19 respectively.

2. In lines 8-27, we execute the SA algorithm to optimize σs, W .

3. In lines 28-33, we calculate precisionbest using (σs, W)_setbest, and then
compare precisionbest with precisionmax, thereby getting the parameters
(σs, W)_setbest with the highest precision among all CIDs.

Since the time complexity of Algorithm 1 isO(|W |), the time complexity of Al-
gorithm 3 is O(|S|×|T |×|W |), where |T | is the temperature in the SA algorithm,
|S| is the number of normal blocks in Learning_Data_with_DoS_attack.

4.3 Evaluation

4.3.1 Precision against Various DoS Attacks

In this section, we evaluate the precision of the similarity-based IDS against each
of the DoS attacks. In actual automobiles, the FP rate in the IDS should be low.
In other words, the similarity-based IDS is expected to have a high TP rate and
a low FP rate. Therefore, we selected a TP rate, an FP rate, and the precision
(TP/(TP+FP)) as the evaluation indicators of the similarity-based IDS. Table 5
shows the evaluation indicators of the entropy-based IDS and the similarity-based
IDS against Traditional, Randomized, and Targeted DoS attacks.

51

Ta
bl

e
5:

C
om

pa
ris

on
of

th
e

pr
ec

isi
on

at
ea

ch
D

oS
at

ta
ck

.

En
tr

op
y-

ba
se

d
ID

S
[9

8]
Si

m
ila

rit
y-

ba
se

d
ID

S

R
A

[%
]

R
N

[%
]

Pr
ec

isi
on

[%
]

R
A

[%
]

R
N

[%
]

Pr
ec

isi
on

[%
]

Tr
ad

iti
on

al
D

oS
10

0.
0

0.
0

10
0.

0
10

0.
0

0.
0

10
0.

0
R

an
do

m
iz

ed
D

oS
[0

,
0d

31
]

94
.6

44
.0

68
.3

10
0.

0
0.

0
10

0.
0

Ta
rg

et
ed

D
oS

10
0.

0
0.

0
10

0.
0

10
0.

0
0.

0
10

0.
0

52

Also, we evaluate the entropy-based IDS and the similarity-based IDS using
only the HCR Lab data set3. Table 5 only shows the precision against the Ran-
domized DoS attack with the range of [0, 0d31] in both methods, because this
range is suitable as the example of entropy-manipulation attacks.

Table 5 shows that the entropy-based IDS can detect DoS attacks in which an
adversary uses a single CAN ID at the high TP rate and high precision. However,
the precision of the entropy-based IDS against Randomized DoS attacks is 68.3%.
Also, the average and standard deviation of entropies of Randomized DoS attacks
are Have = 3.08535, Hdev = 0.07863, and these are almost the same as the average
and standard deviation of the HCR Lab’s data set in Table 3. Hence, we confirm
that the entropy-based IDS cannot correctly classify a Randomized DoS attack.

On the other hand, Table 5 shows that the similarity-based IDS can detect
all DoS attacks with a high TP rate and precision. Therefore, it is confirmed
that the similarity-based IDS has superior precision against Randomized DoS
attacks, as compared with the entropy-based IDS, and has the same precision as
other methods for the other types of DoS attacks. Also, this evaluation made it
clear that the similarity-based IDS with the below parameters can detect all DoS
attacks in the HCR Lab’s data set.

W =25,

σs =0.52499,

CIDs ={0x80,0x80,0x81,0x81,0x153,0x164,0x165,

0x165,0x18f,0x18f,0x220,0x260,0x2a0,0x2b0,

0x316,0x316,0x329,0x370,0x382,0x43f,0x440,

0x4b0,0x4b1,0x545,0x5a2}

4.3.2 Precision against Various CAN ID Ranges of Randomized DoS
Attack

In this section, we compare the similarity-based IDS with the entropy-based IDS
when these IDSs are used under an entropy-manipulation attack. We also com-
pare the two, in Fig. 19, for their precision against entropy-manipulation attacks.

3We must hide specific CAN IDs of real vehicle data except the data set of HCR Lab because
they are not in public from the companies.

53

Table 6: The experimental environment.

CPU Broadcom BCM 2837
1.2GHz 64bit quad-core armv7l

RAM 1GB
OS Debian 8.0

CAN Interface PiCAN 2

Fig. 19 shows the precision against entropy-manipulation attacks of various
ranges, while Table 5 shows the precision against only the entropy-manipulation
attack with the range of [0, 0d31] in both methods. We confirm that the
entropy-based IDS has a range in which the precision decreases, whereas the
similarity-based IDS can detect all ranges.

4.3.3 Detection Time

In this section, we compare the detection time of the similarity-based IDS and
of the entropy-based IDS in the On-line detection phase. Also, since the Off-line
learning phase has nothing to do with real-time detection, we evaluate only the
On-line detection phase.

First, we describe the experimental environment (see Table 6). We assumed
Raspberry Pi, a low-spec evaluation board, to implement our similarity-based IDS
on resource-restricted on-board computers. We also implemented the entropy-
based IDS [98] for the comparison between entropy- and similarity-based IDS.
Thus, the conventional one was conducted in the same environments of similarity-
based IDS for this evaluation.

Next, we define the evaluation time in Fig. 20. The evaluation time T1 shows
the time after the start of the DoS attack until the anomaly is detected. In
other words, T1 is the time that increases in proportion to the sliding windows.
The evaluation time T2 shows the time from receiving W messages as a sliding
window until the time of detecting the anomaly. In other words, T2 is an indicator
to compare the calculation times of the entropy and the similarity.

We show the actual requirement in the detection time of similarity-based IDS.
In some cars, it is impossible to send messages more often than 10 ms apart due

54

0 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 95 12
7

25
5

51
1

10
23

15
35

20
47

CAN ID Range of Randomized DoS [0, x]

0

10

20

30

40

50

60

70

80

90

100
Pr

ec
isi

on
 [%

]

HCR Lab
A
B
C
D
E

(a) Entropy-based IDS

0 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 95 12
7

25
5

51
1

10
23

15
35

20
47

CAN ID Range of Randomized DoS [0, x]

0

10

20

30

40

50

60

70

80

90

100

Pr
ec

isi
on

 [%
]

HCR Lab
A
B
C
D
E

(b) Similarity-based IDS

Figure 19: Comparison of precision against entropy-manipulation attack.
55

𝑇"
𝑇#

Requirements: 10ms

𝑊 = 0 𝑊 = 25

D
oS M

essage

D
oS M

essage

D
oS M

essage

・・ ・

D
oS M

essage

Time [s]
Execute some
prevention method

Detect
DoS attacks

Figure 20: Definition and requirements for detection time in CAN.

to the load requirements placed by vehicle manufacturers [16]. Therefore, if we
can prevent the DoS attacks until 10 ms after starting attacks, the messages can
be sent with the correct intervals. Hence, we define a requirement as which the
T1 must be shorter than 10 ms in the similarity-based IDS.

Fig. 21 shows the box-and-whisker diagrams as the results of T1 and T2

measured 1000 times each. Also, the median of T1 is 6.054 ms in the similarity-
based IDS. In the figure, the detection times T1 of the similarity-based IDS are
lower by one order to the detection times of the entropy-based IDS. As shown in
Fig. 21 (a), the T1 ranges of the similarity-based IDS and of the entropy-based
IDS are 6.052-6.055 ms and 15.142-15.157 ms, respectively. This result is caused
by the difference that is an optimized sliding window W = 25 in the similarity-
based IDS, whereas an optimized sliding window W = 60 in the entropy-based
IDS.

As shown in Fig. 21 (b), the T2 ranges of the similarity-based IDS and of the
entropy-based IDS are 13-15 µs and 1 µs, respectively. The median of T2 is 14
µs in the entropy-based IDS. We confirmed that the similarity-based IDS could
detect an attack up to 93.33% (14 µs) faster than the entropy-based IDS.

56

 15.14

 15.142

 15.144

 15.146

 15.148

 15.15

 15.152

 15.154

 15.156

 15.158

Entropy

T
im

e
 [

m
s
]

 6.051

 6.0515

 6.052

 6.0525

 6.053

 6.0535

 6.054

 6.0545

 6.055

 6.0555

 6.056

Similarity

T
im

e
 [

m
s
]

(a) T1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

Entropy Similarity

T
im

e
 [

µ
s
]

(b) T2

Figure 21: Comparison of detection time.

57

4.4 Discussion

In Section 4.3, the similarity-based IDS can detect all DoS attacks in 100.0%
precision and with a faster time than the conventional entropy-based IDS by up
to 93.33% (14 µs). We discuss these results in this section.

4.4.1 Precision

We found this DoS attack called the entropy-manipulation attack, which by-
passes the conventional entropy-based IDS by adjusting the entropy of messages.
The proposed similarity-based IDS can detect the entropy-manipulation attack
because it can distinguish between the CAN IDs of the entropy-manipulation
attack and the normal CAN IDs. As an experimental result, the similarity-based
IDS achieved a detection precision of 100.0% against the entropy-manipulation
attacks, while the detection precision is 68.3% in the entropy-based IDS. Since
an adversary use CAN IDs with higher priority than normal messages in the
entropy-manipulation attacks, the similarity decreases between normal messages
and the DoS attack. Therefore, as shown in Fig. 19 (b), the similarity-based IDS
can detect entropy-manipulation attacks with 100.0% precision.

However, the similarity-based IDS probably not be able to detect a Replay
DoS attack which is a combination of replay attacks and DoS attacks, because an
adversary can inject the same CAN IDs with normal CAN messages. Since the
entropy-based IDS is effective against a Replay attack, a hybrid implementation
of the similarity-based IDS and the entropy-based IDS would be effective against
Replay DoS attacks.

4.4.2 Detection Time

Due to load requirements placed by the vehicle manufacturers [16], we defined the
requirement as which the T1 must be shorter than 10 ms in the similarity-based
IDS. As the result of Section 4.3.3, the T1 ranges of the similarity-based IDS
and of the entropy-based IDS are 6.052-6.055 ms and 15.142-15.157 ms, respec-
tively. The T1 of the similarity-based IDS meets the 10 ms of the requirement,
whereas the entropy-based IDS’s T1 does not meet the requirement. Thus, we
confirmed that the similarity-based IDS is superior to the entropy-based IDS in

58

actual requirements.
As shown in Fig. 21 (b), the T2 ranges of the similarity-based IDS and of

the entropy-based IDS are 13-15 µs and 1 µs, respectively. Note that the time
complexity of the entropy-based IDS is O(|W |× log(|N |)), and the computational
complexity of the similarity-based IDS is O(|W |) in the On-line detection phase.
Hence, we showed that the detection time is up to 93% (14 µs) shorter than with
the entropy-based IDS in Section 4.3.3.

Incidentally, in ID-Hopping Mechanism [39, 99, 96] which avoids Targeted
DoS attacks, the average overhead required for AES encryption to generate a
one-time ID and for newly setting the CAN ID register are 20.23 µs and 0.2 µs
respectively. Therefore, the impact of achieving rapid IDS 14 µs faster than the
entropy-based IDS is worth to cancel the overhead for utilizing the conventional
IDS and the ID-Hopping Mechanism together.

4.4.3 Comparisons

Some IDSs proposed so far has a good advantage in term of effectiveness to DoS
attacks and the small computational overhead. In the following, these IDSs and
the similarity-based IDS are compared. Table 7 shows a comparison of the related
works.

59

Ta
bl

e
7:

C
om

pa
ris

on
of

th
e

re
la

te
d

wo
rk

s.

R
ul

e-
ba

se
d

ID
S

T
im

e-
in

te
rv

al
ID

S
[8

8]
En

tr
op

y-
ba

se
d

ID
S

[9
8]

Si
m

ila
rit

y-
ba

se
d

ID
S

Tr
ad

iti
on

al
D

oS
10

0%
10

0%
10

0%
10

0%
R

an
do

m
iz

ed
D

oS
10

0%
10

0%
68

.3
%

10
0%

Ta
rg

et
ed

D
oS

0%
0%

10
0%

10
0%

D
iff

er
en

t
B

an
dw

id
th

A
pp

lic
ab

le
N

ot
A

pp
lic

ab
le

A
pp

lic
ab

le
A

pp
lic

ab
le

T
hr

es
ho

ld
-

N
ot

O
pt

im
iz

ed
O

pt
im

iz
ed

O
pt

im
iz

ed
T

im
e

C
om

pl
ex

ity
O

(1
)

O
(1

)
O

(|W
|×

lo
g(

N
))

O
(|W
|)

60

Incidentally, to compare the similarity-based IDS and various methods, we
newly define one of the IDS called Rule-based IDS which detects an attacker
based on a white-list or black-list of CAN ID.

First, we compare each IDSs based on three types of DoS attacks. Rule-
based IDS can detect Traditional and Randomized DoS attacks using a white-
list or black-list because Traditional DoS attacks consisted of messages of CAN
ID 0x000. However, Targeted DoS attacks are bypassed because rule-based IDS
judges attack with the white-list. Time-interval based IDS can detect Traditional
DoS attacks because time-interval based IDS detects anomaly interval of messages
of CAN ID 0x000. When Randomized DoS attacks have messages of same CAN
IDs assigned to the CAN, the time-interval of the CAN IDs is shorter than the
regular time-interval. Hence, the time-intervals IDS detects Randomized DoS
attacks. However, the time-interval IDS cannot detect Targeted DoS attacks
using a non-cyclic CAN ID. The time-interval IDS monitors the CAN IDs which
ECUs send periodically. In other words, the time-interval IDS does not monitor
non-cyclic CAN IDs. As we confirmed in Section 4.3, the entropy-based IDS
can detect Traditional and Targeted DoS attacks. However, the entropy-based
IDS has a problem that the FP rate is high against Randomized DoS attacks.
While our similarity-based IDS using the similarity of sliding windows has a high
precision against both Randomized DoS attacks and the other DoS attacks. As we
mentioned in Section 3.3.2, the entropy-based IDS bypasses entropy-manipulation
attacks which is a kind of Randomized DoS attack, whereas the similarity-based
IDS can detect all DoS attacks. From the comparison above, we confirmed that
the similarity-based IDS could only detect DoS attacks of all types.

Secondly, we describe the applicability in different bandwidth of CAN. The
rule-based IDS can be used in different bandwidth of CAN because this IDS does
not use intervals of messages to detect attacks. Similar to the rule-based IDS,
the entropy-based IDS and the similarity-based IDS are applicable because the
entropy and the similarity are calculated based on CAN IDs of a fixed num-
ber of messages. On the other hand, since the time-interval of messages varies
in each bandwidth, time-interval IDS cannot be used in different bandwidth of
CAN. Thus, we confirmed that the rule-, entropy-, and similarity-based IDSs
have advantages in terms of different bandwidth.

61

Thirdly, we mention whether each IDSs optimize a threshold to judge DoS
attacks. Also, the rule-based IDS detects the attacks based on a white-list or
black-list of CAN ID, so that this IDS does not have a threshold to judge at-
tacks. The time-interval IDS has a threshold to detect DoS attacks with high
accuracy. An expert must manually select this threshold before the IDS is im-
plemented on the actual CAN bus. In addition, the threshold is experimental
rather than theoretical; it is possible that there is an optimized threshold to de-
tect DoS attacks. Both the entropy- and the similarity-based IDSs automatically
optimize a threshold to judge attacks using SA. Therefore, there is an advantage
to determine a threshold in the rule-, entropy-, and similarity-based IDSs.

Finally, we discuss the time complexity. The rule-based IDS uses a white-
list or a black-list to detect intrusions so that the time complexity of this IDS
is O(1). The time-interval IDS calculates the time-interval when received some
messages. Since this IDS only needs calculating the time-interval and comparing
whether the time-interval is normal to detect attacks, the time complexity is
O(1). Next, the time complexity of the entropy-based IDS’s On-line detection
phase is O(|W | × log(N)). As mentioned in Section 4.2.3, the time complexity
of the similarity-based IDS is O(|W |). Thus, the rule-based IDS and Time-
interval IDS have advantages in terms of the time complexity. On the other
hand, we evaluated the actual detection time of the similarity-based IDS. As a
result, we confirmed that our method satisfies the requirement from the vehicle
manufacturers [16]. Therefore, we conclude that the similarity-based IDS can be
operated in the actual environment.

From these comparisons among related works, we confirm that the similarity-
based IDS can detect the DoS attacks of all types. In addition, it was confirmed
that the similarity-based IDS has advantages in terms of applicability in CAN of
different bandwidth, determining the threshold, and the detection time.

4.5 Conclusion

The growing number of vehicles connected to the internet causes a security risk of
cyberattacks such as DoS attacks on modern automobiles. It requires a security
solution that can prevent DoS attacks. To prevent all DoS attacks, firstly we
must consider a method to detect all DoS attacks. In this research, we proposed

62

an optimized DoS attack detection method based on the similarity of sliding
windows that is capable of detecting every type of DoS attack. In addition,
we have solved the entropy-based IDS’ problem of a higher FP rate occurring
when the entropy-manipulation attack is executed. Furthermore, our similarity-
based IDS has lower computational complexity than the entropy-based IDS. We
confirmed that the similarity-based IDS detected a DoS attack in 100% of the
cases in our experiment, and we showed that the detection time is up to 93.33%
(14 µs) shorter than with the entropy-based IDS. We release the source code [73]
hoping to promote research on countermeasures against DoS attacks.

63

5. PLI-TDC: Physical-Layer Identification with
Time-to-Digital Converter for In-Vehicle Net-
works

5.1 Introduction

In Chap. 4, we proposed similarity-based IDS which can fastly detect DoS attacks
with lightweight computing resources. Also, we confirmed that similarity-based
IDS can detect undiscovered entropy-manipulation attacks and the other DoS
attacks with 100 % accuracy. However, similarity-based IDS cannot identify the
sender of DoS messages because it just detects DoS attacks. It is ideal that
IDS can identify the ECU attacking the bus in order to patch the compromised
ECU. Therefore, in this chapter, we study the sender identification based on the
physical-layer characteristic of the ECU.

An IDS based on physical-level characteristics such as delay-time which is
a gap time between ideal transition time and actual transition time has been
proposed, which is called Divider [79]. Divider identifies sender ECUs based on
delay-time measured by a Divider’s internal clock. Thus, if different ECU’s delay-
time have similar variations, this approach may not correctly classify legitimate
ECUs because the time-resolution of the internal clock is coarse. Therefore, we
should focus on enhancing the accuracy of sender identification. In addition,
Divider cannot adapt a drift of delay-time caused by the temperature drift. In
this research, we propose super fine delay-time based PLI with TDC. The TDC
in our method digitizes the delay-time per 154 ps. The proposed method realizes
temperature-robustness by learning the temperature as one of the features. Also,
our proposed method can identify the ECUs with higher accuracy than Divider
and at the same sampling count as Divider.

The main contributions of this study can be summarized as follows:

• We propose a PLI using TDC called PLI-TDC. Our method uses new char-
acteristics in the identification of ECUs in CAN. PLI-TDC does not use con-
tinuous characteristics such as voltage, but the delay-time to be observed
in each rising edge of the CAN message. Hence, PLI-TDC can identify
the ECUs with a lower number of sampling than the voltage-domain based

64

method.

• PLI-TDC achieved mean accuracy of 99.67 % and 97.04 % on CAN bus
prototype and a real-vehicle network, respectively. Additionally, we showed
that this approach achieved a 100% true positive rate against two attacker
models.

• We designed PLI-TDC so that it can be robust against features’ drift caused
by temperature drift. From our experiment, PLI-TDC can achieve a mean
accuracy of over 99% even if the temperature is drifted.

• PLI-TDC solved the problems of detection based on multiple frames, num-
ber of probes, and robustness against feature drift.

5.2 Related Work

Some authentication mechanisms [37, 72, 33, 65, 42] can ensure the authenticity
of ECU sending CAN messages. However, these mechanisms required additional
hardware and revising some source codes to encrypt CAN messages. Besides,
since the authentication mechanisms must manage the key lifecycle based on
PKI, it increases the complexity of the automotive system.

PLI can be applied to CAN protocol without these drawbacks. PLI translates
some inconsistencies (e.g., hardware and manufacturing) caused by a minute and
unique variations to reliable features that can identify ECUs sending CAN mes-
sages [25, 27, 26]. Because we do not need to take revising source code and
key management into consideration, PLI only requires an additional node to run
acquiring fingerprints and classification algorithms.

The timeline of related PLI researches are summarized in the timeline of Fig.
22.

5.2.1 Voltage Domain Characteristics Based PLI

Murvay et al. proposed a method for sender identification based on physical
voltage features in CAN [67]. Moreover, Choi et al. improved Murvay’s method
in [11]. They embed a fixed bit string into the extended identifier field of the CAN
frame and sample the signal and identify ECUs by using 17 different features.

65

2014

2021

Murvay et al. [67] propose a first VIDS (2GS/s, 2 features).

Choi et al. [11] improve the first VIDS with extending the features
(2.5GS/s, 17 features).

2016

Cho et al. [9] derive a first clock-skew based IDS called CIDS.

Cho et al. [10] propose a multiple-frame based lightweight VIDS called
Viden (50kS/s, 1 features).

2017

Choi et al. [12] improve the VIDS proposed in [9] against attacks using
various CAN frames (250MS/s, 21 features).

2018

Kneib et al. [44] propose Scission which gains the significant character-
istics (e.g. overshoot) of CAN signal (20MS/s, 18 features).

Foruhandeh and Man et al. [23] propose an one-frame based
lightweight VIDS called SIMPLE (1MS/s, 1 features).

2019

Zhou et al. [104] propose a bit-time based method called BTMonitor
(50MS/s, 8 features).

Kulandaivel et al. [50] introduce a network mapping technique called
CANvas, which uses the clock-skew to analyze the CAN bus.

Murvay et al. [68, 32] derive a propagation-delay based intrusion detec-
tion and ECU localization called TIDAL-CAN, CAN-SQUARE.

2020

Kneib et al. [46] develop an edge-based sender identification called
EASI (2MS/s, 12 features).

Ohira et al. [79] propose a delay-time based lightweight sender identifi-
cation called Divider (3 features).

Bhatia et al. [7] propose DUET attacks for breaking PLI defenses such
as Viden and Scission.

Ohira et al. (this dissertation and [78]) propose PLI-TDC which im-
prove the time-resolution of Divider (9 features).

Figure 22: Timeline of PLI researches.

66

Hence, these methods cannot be implemented on the normal CAN because they
require the extended frame format in CAN.

Cho et al. proposed a system for identifying an attacker by using voltage
difference among ECUs called Viden [10]. They implemented the system on
MCU of a lower sampling rate (50 kS/s) than CAN bus bit rate. Therefore,
Viden requires two or three messages to output a voltage instance and updates
the profiles. Thus the receiver cannot help rejecting the first forged message.

Besides, since Viden relies on multiple messages to make detection and iden-
tification, Viden has vulnerability against the Hill-climbing-style attack [23], in
which an attacker sends gradually malicious messages without being either de-
tected or identified. To be robust against the Hill-climbing-style attack, IDS has
to detect the attacks using features acquired in one message [11, 44, 45, 23].

Scission [44] solved the problem in the sender identification method proposed
by Choi et al. [11] which the method could not get significant characteristics
such as the overshoot. Scission achieves 99.85 % of identification accuracy which
is higher than that of Viden and the method of Choi et al. However, since Scission
uses Fourier Transform to calculate the features of the frequency domain, the time
complexity of Scission is Ω(n log n) which is higher than the time complexity of
SIMPLE [23]. Because SIMPLE only uses means of voltage as a feature of ECUs,
the time complexity is Θ(n). Since these sender identification methods use a
result of sampling continuous function, the accuracy of identification depends
on the sampling rate. In general, as the sampling rate increases, the accuracy
of identification is improved. But the amount of data used for the identification
increase too. Hence, IDS which is limited in computing resources on the in-vehicle
system needs to be able to identify ECUs with few sampling. Therefore, we focus
on the sender identification method using other characteristics with few sampling.

5.2.2 Time Domain Characteristics Based PLI

Table 8 shows a comparison among time-domain PLIs.
Bit-time based PLI called BTMonitor [104] has been proposed. This method

achieved a mean accuracy of over 99% based on features extracted from CAN
messages ranging from 5 to 50. Similar to Viden, it cannot help in rejecting
the first forged message. In addition, a mean accuracy is 90.04% if BTMonitor

67

Table 8: Comparison among time-domain based physical-layer identifications for
CAN.

BT
M

on
ito

r [
10

4]

TI
DA

L-
CA

N
[68

]

Di
vi

de
r [

79
]

PL
I-T

DC

Accuracy [%] 99.59 100.0 87.20 99.67
Bit Propagation Transition Transition

Source
-time -delay -time -time

One frame no yes yes yes
of probe 1 2 1 1

Concept drift
robustness

yes no no yes

uses the features from one CAN message. Hence, a PLI should achieve a mean
accuracy of over 99 % with only one CAN message.

The PLI based on the propagation-delay of wire is caused by wire speed
have been proposed [94, 68]. These method require at least two probe points
for each CAN. The modern in-vehicle network often divided into multiple parts.
Therefore, 2n probe points are required for n CANs in this method. It ruins the
simplicity of CAN bus due to the requirement of increasing the probe points. In
terms of applicability to real-vehicles, the identification method should have one
probe point for each CAN. Further, this methods may not be robust against the
drift of features caused by temperature change, and so on.

Divider [79] has some advantages in terms of the number of frames used in the
detection and the number of probes compared to the other time-domain meth-
ods. Divider uses delay-time which is a gap from ideal transition-time to actual
transition-time in typical CAN transceiver. If there are some ECUs with similar
gaps, Divider cannot correctly classify the sender ECU. Also, Divider can distin-
guish the ECUs with a mean accuracy of 87.20 % in the case of time-resolution
20 ns. Therefore, Divider has a disadvantage in classification accuracy compared
to BTMonitor and TIDAL-CAN. It is required that time-resolution in Divider is

68

Data Acquisition
with TDC

Feature
Extraction Classification

CAN Signal (High, Low)

ECUs
Legitimate

or
Malicious

Train

Test

PLI-TDC

FPGA Microcomputer

Figure 23: Proposed physical-layer identification.

improved to overcome the problem of classification accuracy. In addition, similar
to TIDAL-CAN, Divider is not robust against the drift of features.

In the next section, we propose a fine time-resolution TDC based PLI which
has higher accuracy than Divider and overcomes the problems such as needing
multi frames and intolerance of temperature change. To solve these problems, we
improve Divider by data acquisition using fine time-resolution TDC and adding
temperature information as one feature.

5.3 Super Fine Delay-Time Based Physical-Layer Identifi-
cation

As with general PLI [93], PLI-TDC consists of three phases, data acquisition
with TDC, feature extraction and classification, as shown in Fig. 23. In the data
acquisition phase, the delay-time is acquired as a digital value using TDC. In the
feature extraction phase, the delay-time obtained from TDC is converted into
statistics such as average, variance, and so on. Finally, it classifies the source
ECU of the CAN message to judge whether the ECU is legitimate or malicious.
In the following sections, we describe each phase in order.

5.3.1 Data Acquisition with TDC

The data acquired by PLI-TDC is the delay-time in the rise- and fall- times of
the CAN signal, and its definition and observation method are described below.

Definition of delay-time
The delay-time used in PLI-TDC is the same as Divider’s delay-time [79]
which is the gap time between actual transition-time and ideal transition

69

Figure 24: Delay model in CAN.

time of the signal in CAN transceiver. The Divider’s delay-time is caused by
the load capacitance of the transistor in CAN transceiver. And the factors
of load capacitance include three types of output capacitance at the gate of
the transistor, input capacitance of the gate and wiring capacitance. Here,
the cause of the delay-time and the equation for calculating the delay-time
are described.

A delay model in CAN is showed in Fig. 24. The time variables have the
following relation. From the definition, we obtain the following equation.

t3 − t2 = t4 − t1 (9)

Here, the time actually measured at the IDS is only t4, and t1, t2, t3 are un-
known. Therefore, we use an approximation. From [79], since t1 is regarded
as tbit which is ideal bit time, we obtain the following equation.

t3 − t2 ≈ t4 − tbit (10)

Also, tbit is 2000 ns in CAN (500 kbps). Hence, PLI-TDC acquire delay-
times by observing the t4 − tbit.

TDC based measurement of delay-time
The TDC is a time digitizer used for physics experiments and time-of-flight

70

(ToF) technique [89]. An IC containing TDC is sold as a product for about
$23.80 [3]. However, the IC does not satisfy a requirement for PLI-TDC,
because it is necessary to directly control TDC to match the arbitration ID
and measured time in PLI-TDC. On the other hand, the methods of imple-
menting TDC at low cost using Field-Programmable Gate Array (FPGA)
have been studied [89, 97]. Also, an arbitration ID and delay-time can
be easily matched by implementing TDC in FPGA. Therefore, TDC on
FPGA is used to observe the delay-time in CAN with high time-resolution
in PLI-TDC.

First, we describe the composition of CMOS based TDC (CMOS TDC)
which is one of the typical TDC [4]. Fig. 25 (a) shows CMOS TDC circuit.
The CMOS TDC is implemented by D-type flip-flops and delay-cells causing
a little delay τ ps. Here, we explain the operation of CMOS TDC. We define
T is the measured time. Further, we suppose that there is a signal Rx (the
top of Fig. 25 (a)) whose logical value is 0 during the time T . This signal
Rx is inputted to the two inputs of CMOS TDC simultaneously. After
inputting, as shown in Fig. 25 (b), the input signal delayed by the delay-
cells by τ and propagates to the entire CMOS TDC. If the signal Rx rises,
the output of the D-type flip-flop to the output Q and D0D1D2D3 are
determined. Thus, the output of CMOS TDC D0D1D2D3 = (0, 0, 0, 1) is
obtained. Here, assuming the delay τ = 100 ps, the signal is propagated
from the output D0D1D2D3 = (0, 0, 0, 1) to the third delay cell. Therefore,
T = 3× 100 ps = 300 ps. Generally, TDC achieves high time-resolution by
the above operation.

Next, we describe the implementation method of FPGA based TDC. Song
et al. [89] implemented a delay-line using a multi-bit adder in FPGA. Fig.
25 (c) shows the implementation of delay-line using a multi-bit adder in
Tapped-Delay TDC. The boolean equation of each adder is as follows.

S = A⊕B ⊕ Ci (11)

Co = AB + (A + B)Ci (12)

where A and B are the input of the adder, and Ci (carry-in bit) is the input
carried from the previous adder, Co (carry-out bit) is the output carrying to

71

Rx

Rx

Rx

τ τ τ τ

!

"# = 0 "& = 0 "' = 0

τ

"(= 1

D

Q Q Q Q

D D D

(a) Circuit of CMOS TDC.

𝑇

𝐷# = 1

𝐷& = 1 → 0

𝐷) = 1 → 0

𝐷* = 1 → 0𝜏

𝜏

𝜏

𝜏

(b) Timig-chart of CMOS TDC.

AdderAdderAdder

𝐴 = 1 𝐵 = 𝐻𝑖𝑡

𝐶) = 0

𝑆[0]

𝐶.[0]𝐶.[1]𝐶.[𝑛 − 1]𝐶.[𝑛]

𝑆[𝑛]

𝐴 = 1 𝐵 = 0𝐴 = 1 𝐵 = 0

𝑆[1]

(c) Delay-line in FPGA-based TDC.

Figure 25: Implementation method and timig-chart of TDC.

72

the next adder, and S is the result of the addition. Therefore, the delay-line
propagate Co[0] = 1 when a signal Hit becomes Hit = 1. And then, The
output case S of each adder becomes 0.

We describe that the time-resolution performance of the implemented FPGA
based TDC. When a 20 ns pulse was input to the TDC, the signal was trans-
mitted to the 92 delay element. Similarly, when a 40 ns pulse was measured,
the signal was transmitted to 183 delay elements. From this results, a de-
lay with one delay-cell is 40−20

183−92ns = 219 ps. Then, we calculated the root
mean square error (RMSE) between the actual value and the true value
20 ns. And we measured the 20 ns pulse in 50000 times. As a result, it was
obtained that the RMSE was 154.011 ps. Therefore, the implemented TDC
has a time resolution of 154 ps.

The delay-time experimentally observed by TDC is shown in Fig. 26. Six
arbitration IDs are plotted from two ECUs. The arbitration IDs of ECU
a is plotted around 50 ns, and the arbitration IDs of ECU b is plotted
around 110 ns. Therefore, we confirm that sender identification is possible
regardless of the arbitration ID of the CAN message sent from the two
ECUs.

Measurement period
As we showed in Fig. 4, length of the data frame on CAN is variable and
it is set in the DLC field. Therefore, even if the length of the CAN frame
is the shortest (DLC=0), it is necessary to reliably be able to measure the
section transmitted by the target node. Then, considering CAN frame such
as DLC=0, 35 bits of signal of SOF (1 bit), the arbitration field (12 bits),
the control field (6 bits) and CRC filed (16 bits) are transmitted by the ACK
field. Here, if we include the CRC delimiter to the measurement period,
the rising edge of the ACK slot may be measured. We subtract 1 bit from
the 35 bits. Hence, we set the measurement period from SOF to time that
passing 34 bits time (68 µs). Since the length of 1 frame is not shorter than
the CAN frame in case of DLC=0, this allows us to reliably measure only
the signal of the target node. Also, during the measurement of delay-time,
the time capture is performed every rising edge of the Rx pin.

73

0 10 20 30 40 50 60
Samples

0

25

50

75

100

125

150

175

200

M
ea

n
(d

el
ay

-ti
m

e)
 [n

s]

ID 1 (ECU a)
ID 2 (ECU a)
ID 3 (ECU a)

ID 4 (ECU b)
ID 5 (ECU b)
ID 6 (ECU b)

Figure 26: An example of two ECUs’ delay-times observed by Time-to-Digital
Converter.

74

We describe how to obtain delay-time, tdelay from the measured counter
value. As the unit of timer counter value is 0.154 ns, The elapsed time from
SOF, telapsed (ns) can be calculated as:

telapsed = (capture counter value− SOF counter value)× 0.154 (13)

The value of elapsed bits from the SOF at each rising edge can be calculated
as follows:

⌊telapsed + 500
2000

⌋ (14)

where, 500 is added in the numerator to round telapsed by 1000 ns, 2000 is
the value of tbit in ns. Also, 500 is offset to obtain the correct elapsed bits.
And the ideal value of elapsed bits can be obtained with floor function.

Therefore, the ideal elapsed time from SOF, tideal (ns) can be calculated as
follows:

tideal = ⌊telapsed + 500
2000

⌋ × 2000 (15)

tdelay (ns) we want to calculate is:

tdelay = telapsed − tideal = telapsed − ⌊
telapsed + 500

2000
⌋ × 2000 (16)

Here, we describe the detail of the relation between Equation (10) and (16).
Fig. 27 shows an example of the relation in the SOF bit of CAN message.
In Fig. 27, the actual signal is observed by IDS and the other ECUs with
an unavoidable delay, tdelay, which is a gap from 2000 ns of the ideal signal
timing.

We confirm that tdelay equals t4 − tbit. First, telapsed equals t4 because these
are times of the dominant signal observed by IDS and the other ECUs.
Next, we explain the relation between tbit and tideal. tbit is an ideal elapsed
bit time, and it is 2000 ns in SOF field of CAN message. In addition, tideal

indicates the ideal rise time estimated from telapsed. For example, in case
of telapsed = 2050 ns, tideal is 2000 ns according to Equation (15). In other
words, if tideal can be estimated correctly, then tbit equals tideal. Therefore,
t4 − tbit and tdelay are equal.

75

𝑡"#$%& = 2000ns
ideal signal

𝑡$&%,-$#

𝑡#$&%. = 𝑡/ − 𝑡1"2

actual signal

Start Of Frame Field Arbitration Field

𝑡1"2 = 2000ns

𝑡/

Figure 27: Relation between Equation (10) and (16).

5.3.2 Feature Extraction

Similar to Scission [44], PLI-TDC selects efficient features from the statistics in
Table 9. In order to determine the efficient features, the features are ranked using
Relief-F [47], which is an algorithm that calculates the weight of the features.

Table 10 shows the result of Relief-F in data obtained from a CAN bus pro-
totype and a real-vehicle’s bus. In order to reduce the complexity of the model
and the time required to calculate the features, PLI-TDC uses only the features
which weight of Relief-F is 0.01 or more in both the CAN bus prototype and the
real-vehicle. As a result, eight statistics except energy and variance are selected.
In the following, the eight statistics are defined as features.

5.3.3 Classification

Sender identification results in a classification problem. In PLI-TDC, the mean
accuracy of various learning algorithms is evaluated. And an algorithm with the
highest mean accuracy is used in the classification phase of PLI-TDC.

Here, we describe a comparison of the various learning algorithm. We compare
typical learning algorithms composed of function values, distances, trees, and so
on. The comparison is summarized in Table 11. The abbreviations express Logis-

76

Table 9: A list of statistical features considered in the selection. x is the delay-
time in one CAN message, N is the number of measured delay-time in one CAN
message.

Feature Description
Mean µ = 1

N

∑N
i=1 x(i)

Standard Deviation (Stdev) σ =
√

1
N

∑N
i=1(x(i)− µ)2

Variance σ2 = 1
N

∑N
i=1(x(i)− µ)2

Skewness skew = 1
N

∑N
i=1(

x(i)−µ
σ

)3

Kurtosis kurt = 1
N

∑N
i=1(

x(i)−µ
σ

)4

Root Mean Square (RMS) rms =
√

1
N

∑N
i=1 x(i)2

Max max =max(x(i))i=1...N

Min min =min(x(i))i=1...N

Energy en = 1
N

∑N
i=1 x(i)2

Table 10: Ranking of the features calculated by Relief-F [47].

Rank
CAN bus

Weight real-vehicle Weight
prototype

1 Mean 0.11025
Stdev

0.09311
(fine time)

2 Min 0.08773 Mean 0.05028
3 RMS 0.05644 RMS 0.04833
4 Max 0.04696 Min 0.04613
5 Kurtosis 0.03398 Kurtosis 0.04090

6
Stdev

0.02949 Skewness 0.03694
(fine time)

7 Skewness 0.02307 Max 0.02468
8 Stdev 0.01282 Stdev 0.01746
9 Energy 0.00878 Energy 0.01639
10 Variance 0.00104 Variance 0.00723

77

Table 11: Comparison of machine learning algorithms for PLI-TDC

Classification Training Model Overall
Speed Speed Adjustment Complexity

LR ×
Naive Bayes

MLP × × × ×
KNN × ×

Decision Tree ×
Random Forest ×

SVM (RBF) × × ×

tic Regression (LR), Multi-Layer Perceptron (MLP), K-Nearest-Neighbor (KNN),
Support Vector Machine (SVM), Radial Basis Function (RBF), respectively. In
PLI-TDC, classification speed is essential to identify all messages. LR, Naive
Bayes, Decision Tree, and Random Forest meet this requirement. In addition,
in in-vehicle networks, some features’ drift may be caused by material wear and
temperature fluctuations. Therefore, the model should be tolerant of the drift.
LR and Naive Bayes may do, but Decision Tree and Random Forest may not.
On the other hand, Decision Tree and Random Forest have the advantage of fast
training speed in case that the number of trees is few. Therefore, the Decision
Tree and Random Forest can adapt the drift by deploying the new model per
fixed times. Therefore, PLI-TDC uses an algorithm with the highest accuracy
among these four faster algorithms.

5.3.4 Enhancing the Concept Drift Robustness

In some voltage-based sender identification methods [10, 9, 23, 104], it has been
confirmed that the sender’s features such as voltage are changed by the drift
of temperature. Therefore, we must investigate whether or not the change of
delay-time is caused by drift of temperature. We conducted an experimental in-
vestigation to determine whether the delay-time has a drift of temperature in Sec.
5.4.4. As a result, some ECUs had a delay-time that increases monotonically and
some ECUs did not show a change in the delay-time. Therefore, PLI-TDC must

78

be robust against the drift of temperature as in the voltage-based source identifi-
cation method. The approaches to avoid drift of temperature in the voltage-based
PLI is as follows.

1. Correction of features with liner regression [23]

2. Detection with multi models [104]

3. Tracking to features’ drift [10, 9]

The first method employs linear regression. It cannot be applied to PLI-TDC
because the delay-time does not increase linearly with the drift of temperature
as described in Sec. 5.4.4. The second method uses multiple models. It makes
the memory usage in a resource-limited system increase compared to one model.
Thus, it is ideal to avoid the drift with one model. The third feature tracking
method which is used in CIDS [9] and Viden [10] is vulnerable to Hill-climbing-
style attack, because they use several CAN message lastly received for learning
[23]. Therefore, in the PLI-TDC, the temperature is added as one of the features.

5.3.5 Implementation

In this section, we describe the implementation of PLI-TDC. As mentioned in Sec.
5.3.1, PLI-TDC measures the 34 bits to observe delay-time no matter what length
of the data field is received. We show the block diagrams of the implementation
of PLI-TDC in Fig. 28 (a). The MCP2551 is a CAN transceiver as the interface
between a CAN controller and the physical bus. We also selected an FPGA as
a measurement device, because a measurement with software cannot process all
messages without missing ones due to the limitation of the ability of microcom-
puter. We show the prototype of PLI-TDC in Fig. 28 (b). We developed the
prototype of the proposed method using FPGA and microcomputer, selected the
DE0-CV Cyclone V Board (5CEBA4F23C7) as an FPGA and Raspberry Pi 3
Model B+ as a microcomputer.

Here, we describe the circuits of FPGA in PLI-TDC. The circuits are divided
into five operations as follows.

79

SPI

Coarse
Time

Sampling

FPGA (Intel Cyclone V)

CAN bus

Rx

Microcomputer
(Raspberry Pi 3 model B)

SPI masterSPI slave

34

MCP2551

FIFO

Arbitration ID
and DLC

Identification

+
34

12 7

TDC

15 DS18B20
(temperature

sensor)

(a) Implementation of PLI-TDC.

(b) Prototype of PLI-TDC.

Figure 28: Implementation and prototype of PLI-TDC.

80

• Coarse Time Sampling Circuit
This circuit measures a period of CAN message in the measurement period
of 34 bits with counting per 20 ns.

• TDC Circuit
The TDC circuit measures the period with counting per 154 ps. The coarse
time sampling and TDC circuit send counting value to a FIFO queue per
Rx rising edge of CAN.

• Arbitration ID and DLC Identification Circuit
As its name suggests, we observe and store the arbitration ID and DLC
of every message. Similar to the coarse sampling circuit, the arbitration
ID and DLC sampling circuit sends arbitration ID to FIFO queue per Rx
rising edge too.

• FIFO Circuit
In this circuit, we stack the measured data of 34 bits constructed of an
arbitration ID of 11 bits, a DLC of 4 bits, and the counter value of coarse
/ fine time of 19 bits.

• SPI Slave Circuit
We implement the SPI slave module to send measurement data to the Rasp-
berry Pi.

The operation of the measurement is as follows.

1. Starting the capture of measurement time and arbitration ID, an occurrence
at the falling edge of SOF bit.

2. Send the measurement data (arbitration ID and measurement time like as
shown in Fig. 29) with every rising edge of Rx to a FIFO queue. We
calculate the delay-time with equation (16) and record the delay-time after
Raspberry Pi receives the measurement data from the FPGA.

3. After reading 34 bits from SOF, the measurement is ended.

4. When CAN frame is completely received, the coarse time sampling circuit,
TDC circuit, and arbitration ID and DLC identification circuit are waiting
SOF bit.

81

Figure 29: An example of outputted measurement data from PLI-TDC.

Finally, we describe the receiving performance of PLI-TDC. Fig. 30 shows the
CAN message loss rate when the CAN bus occupancy of PLI-TDC is changed.
Fig. 30 also shows the loss rate when the queue length of the FIFO module
in PLI-TDC is 512, 2048, and 8192, respectively. As shown by 30, when the
queue length is 512 and 2048, we confirmed that the loss rate increases as the bus
occupancy rate increases. On the other hand, In the case that the queue length is
8192, the loss rate is 0 %. Therefore, we experimentally confirmed that PLI-TDC
can measure the delay-time without spilling the CAN message even when the bus
occupancy rate is 100 %.

5.4 Evaluation

In this section, we describe the evaluation of the results. First, we evaluate the
accuracy of the identification of ECUs. Second, we experiment on two attacker
models and evaluate the attacker detection performance of PLI-TDC. Third, we
confirm the robustness of PLI-TDC under different temperatures. Finally, we
measure the detection time of PLI-TDC from the feature extraction phase to the
classification phase.

82

0 20 40 60 80 100
Bus occupancy [%]

0

1

2

3

4

5

6

CA
N

m
es

sa
ge

 lo
ss

 [%
]

FIFO=512
FIFO=2048
FIFO=8192

Figure 30: CAN message loss rates of PLI-TDC when changing the CAN bus
occupancies.

83

Panda OBD-II InterfaceRaspberry Pi, PiCAN2
Arduino UNO,
CAN-BUS Shield

Car B Combination Meter Car A Combination Meter FPGA, Raspberry Pi

CAN Transceiver CAN Transceiver CAN Transceiver CAN Transceiver

CAN Transceiver CAN TransceiverCAN Transceiver

ECU3

ECU5

ECU1

ECU6

ECU2 ECU0

IDS
Car B ECU

CAN Transceiver

ECU4

Arduino UNO,
CAN-BUS Shield

(a) The CAN bus prototype.
Transmission Control ECUCombination Meter ECUSkid Control ECUEngine Control ECU

Steering Sensor ECU Power Steering ECU OBD-II Connector Unknown ECU

CAN Transceiver CAN Transceiver CAN Transceiver CAN Transceiver

CAN Transceiver CAN Transceiver CAN Transceiver

ECU5

ECU0

ECU1

ECU2

ECU3 ECU4

ECU6

(b) A part of CAN bus in the real-vehicle.

Figure 31: Environments for evaluations.

5.4.1 Environments and Attacker Models

In this section, we describe the environments for evaluating PLI-TDC.
Fig. 31 (a) shows the prototype of the CAN bus topology we implemented

in our experiment. We prepare various ECUs to evaluate PLI-TDC. The various
ECUs we prepared are described here. As shown in Fig. 31 (a), ECUs 0, 1, 2,
and 3 are implemented by microcomputers and dedicated CAN boards. ECU4
is an actual ECU not connected other than CAN, ECUs 5 and 6 are an actual
combination meter of each different car model. We cannot control sending CAN
messages of ECUs 4, 5, and 6 but these ECUs automatically send some messages
periodically, so that PLI-TDC uses the messages to fingerprint ECU.

Fig. 31 (b) shows a part of CAN in real-vehicle which is used to evaluate PLI-
TDC. The real-vehicle has multiple CAN buses. One of these CAN buses has a
realistic environment in which each ECU has a yaw-rate sensor or an acceleration
sensor sends the information to the meter ECU. This CAN bus also has an OBD-

84

II. Compromised ECU
Radio

Engine
ECU

Meter
ECU

OBD-II
Port

Brake
ECU

I. Unmonitored ECU

Figure 32: Attacker models defined by Sec. 2.4.

II port. In the real-vehicle experiment, we have collected the datasets during
driving and stopping.

We define two types of attacker models (Fig. 32) as follows. The first model is
based on the hacking of Jeep Cherokee [62]. In actual hacking of Jeep Cherokee,
Miller and Valasek exploited a passive or unmonitored ECU’s update mechanism
to inject their code. Thus, we suppose the type of attacker called unmonitored
ECU. By the way, since an ECU has some connectivity interfaces such as Wi-Fi
or Bluetooth, some attackers may exploit the attack surfaces such as Wi-Fi or
Bluetooth [14]. Therefore, we suppose the attacker model called compromised
ECU which is an ECU exploited by the attacker through attack surfaces.

5.4.2 Idetification of ECUs

First, we evaluate the mean accuracy of the four algorithms described in Sec.
5.3.3. We show a result of the evaluation of each algorithm in Table 12. Also, we
used Random Forest of the number of trees is 50. As the result, we confirmed that
Random Forest classifier is the highest accuracy in both CAN bus prototype and
real-vehicle. Therefore, we decide that PLI-TDC uses a Random Forest classifier.

Next, we evaluate the mean accuracy with the Random Forest classifier of
each ECU in the CAN bus prototype. We have captured 9000 messages from
each ECU, dividing the messages into 80 % and 20 % for learning and testing

85

Table 12: Mean accuracy of each algorithm.

Mean accuracy [%]
Algorithms CAN bus prototype real-vehicle
LR 92.86 74.83
Naive Bayes 88.05 75.94
Decision Tree 99.48 95.49
Random Forest 99.67 97.04

Table 13: Confusion matrix for the identification of ECUs of the CAN bus pro-
totype.

Predicted label
ECU0 ECU1 ECU2 ECU3 ECU4 ECU5 ECU6

A
ct

ua
ll

ab
el

ECU0 99.04 0.06 0.00 0.00 0.00 0.89 0.00
ECU1 0.06 99.78 0.06 0.00 0.00 0.11 0.00
ECU2 0.00 0.00 99.94 0.06 0.00 0.00 0.00
ECU3 0.00 0.00 0.06 99.94 0.00 0.00 0.00
ECU4 0.00 0.00 0.00 0.00 100.00 0.00 0.00
ECU5 1.29 0.00 0.11 0.00 0.00 98.60 0.00
ECU6 0.00 0.00 0.00 0.00 0.06 0.00 99.95

respectively, calculating the eight features from the messages, putting the features
into machine learning algorithms. We evaluate the proposed method using K-fold
cross-validation in K=5. As a result, the mean accuracy is 99.67 %. A confusion
matrix in K-fold cross-validation is shown in Table 13. PLI-TDC can identify
correctly with up to 100.00 %. While a minimal identification rate is 98.60 % in
CAN bus prototype.

We have also evaluated ECU identification accuracy in real vehicle’s CAN
bus. We have run around the our university (1.1 km) with 10 km/h to 30 km/h.
We have captured 400000 messages from the ECUs. Half of the 400000 messages
were observed in stopping and the rest were observed in running. We used the
6010 of the 400000 messages. The number of messages of ECUs 0, 1, 2, 3, 4,
and 5 is 1000 messages, respectively. But, the number of ECU6’s messages is

86

Table 14: Confusion matrix for the identification of ECUs of the real-vehicle.

Predicted label
ECU0 ECU1 ECU2 ECU3 ECU4 ECU5 ECU6

A
ct

ua
ll

ab
el

ECU0 99.50 0.00 0.00 0.50 0.00 0.00 0.00
ECU1 0.00 97.97 0.00 0.00 2.03 0.00 0.00
ECU2 0.00 0.00 98.50 0.00 0.00 0.15 0.00
ECU3 0.00 0.00 0.00 95.31 0.00 4.69 0.00
ECU4 1.99 1.99 0.00 0.00 96.02 0.00 0.00
ECU5 0.47 0.00 1.41 7.55 0.00 90.09 0.00
ECU6 0.00 0.00 0.00 0.00 0.00 0.00 100.00

only 10 messages, because it is non-periodic messages. As with the CAN bus
prototype, we divided the CAN messages of the delay-time into learning data
and testing data. Hence, we evaluate PLI-TDC using K-fold cross-validation in
K=5. From the K-fold cross-validation, PLI-TDC performed well with an average
accuracy of 97.04 %. A confusion matrix is shown in Table 14. We confirmed that
PLI-TDC can identify each ECU correctly with up to 100.00 % while a minimal
identification rate is 90.09 %.

5.4.3 Attacker Detection

In this section, we evaluate the intrusion detection capability of the learned model.
To reproduce unmonitored ECU, we attach a new ECU which is ELM327 to the
CAN bus prototype. Additionally, we sent an arbitration ID: x assigned in ECU3
from unmonitored ECU spoofed to ECU3. Spoofing attacks were performed for
three minutes from unmonitored ECU, and the data during attacks of ECUs were
classified by the learned model. The results are shown in Table 15. "Predicted:
Attack" is when PLI-TDC classifies messages of ID: x as other than ECU3, "Pre-
dicted: Normal" is when PLI-TDC classifies messages of ID: x as ECU3. We
confirm the true positive rate against compromised ECU is 100.00 % and the true
negative rate is 99.32 %.

We evaluate the ability of intrusion detection against compromised ECU. We
attached the Arduino UNO (the ECU2 in the prototype of CAN bus) as a com-

87

Table 15: Confusion matrix against sending ID: x from compromised ECU
spoofed to ECU3.

Predicted: Attack Predicted: Normal
Actual: Attack 1.0000 0.0000

Actual: Normal 0.0068 0.9932

Table 16: Confusion matrix against sending ID: y from compromised ECU
spoofed to ECU3.

Predicted: Attack Predicted: Normal
Actual: Attack 1.0000 0.0000

Actual: Normal 0.0570 0.9430

promised ECU in the CAN of the real-vehicle. We assume the spoofing attacks
of speed information from the compromised ECU. Therefore, the compromised
ECU sends ID: y assigned as arbitration ID of speed in the real-vehicle. Spoofing
attacks were performed for three minutes from compromised ECU, and the data
during sending messages of ECU3 (legitimate ECU of ID: y) and compromised
ECU were classified by the learned model. The results are shown in Table. 16.
We confirm the true positive rate against compromised ECU is 100.00 % and the
true negative rate is 94.30 %.

5.4.4 Identification of ECUs under Temperature Concept Drift

Here, we evaluate PLI-TDC under different temperatures. We used cardboard to
cover the CAN bus prototype and increase the ambient temperature of the CAN
bus prototype using a heat-gun, as shown in Fig. 33. And we corrected data
during increasing temperature. We have received 100000 messages from seven
ECUs in the CAN bus prototype. We use the messages to calculate R-squared
(R2) in case that X is temperature and Y is delay-time. The average R2 and
mean square error (MSE) are given in Table 17. It shows the R2 and MSE

using the data from 30 ◦C to 45 ◦C. The R2 varies depending on the type of CAN
transceiver. Therefore, a learned model must respond to feature drift caused by
drift of temperature for ECUs 1, 2, and 3.

88

CH1 CH3

CH4 (IDS)
CH2

Heat-gun

Figure 33: Our testing environment for changing the ambient temperature of the
CAN bus prototype.

89

Table 17: A result of liner regression against temperature drift (CAN bus proto-
type).

ECU (CAN transceiver) R2 MSE

ECU0 (TJA1040) 0.0006 0.9994
ECU1 (MCP2551) 0.8544 0.1456
ECU2 (MCP2551) 0.8242 0.1758
ECU3 (MCP2551) 0.6947 0.3053
ECU4 (TJA1040) 0.0948 0.9052
ECU5 (SE706) 0.0706 0.9294
ECU6 (TJA1042) 0.0102 0.9898

Furthermore, we validated a new robust model for which temperature is added
as one of the features. First, we validated the Random Forest model that learned
only the eight features’ data at each temperature, and the mean accuracies are
shown in the Table 18.

90

Ta
bl

e
18

:
M

ea
n

ac
cu

ra
ci

es
un

de
r

di
ffe

re
nt

te
m

pe
ra

tu
re

in
C

A
N

bu
s

pr
ot

ot
yp

e
(e

ig
ht

fe
at

ur
es

).

Te
st

in
g

da
ta

30
◦ C

31
◦ C

32
◦ C

33
◦ C

34
◦ C

35
◦ C

36
◦ C

37
◦ C

38
◦ C

39
◦ C

40
◦ C

41
◦ C

42
◦ C

43
◦ C

44
◦ C

45
◦ C

Trainingdata

30
◦ C

99
.8

97
.2

95
.9

95
.5

96
.0

96
.5

96
.1

94
.4

95
.7

94
.8

96
.0

96
.2

96
.3

90
.8

84
.4

80
.5

31
◦ C

96
.1

99
.7

95
.7

95
.9

95
.9

96
.5

96
.0

94
.6

95
.7

95
.0

96
.2

96
.2

96
.5

91
.2

85
.2

82
.3

32
◦ C

96
.4

97
.3

99
.5

96
.4

96
.3

97
.1

96
.8

95
.6

96
.4

95
.9

96
.5

96
.4

96
.6

91
.2

84
.2

80
.2

33
◦ C

95
.6

96
.6

96
.4

99
.7

96
.7

96
.9

96
.8

95
.6

96
.2

95
.7

96
.6

96
.6

96
.7

91
.6

85
.5

83
.2

34
◦ C

95
.3

96
.4

95
.7

96
.0

99
.8

97
.2

97
.1

95
.7

96
.4

95
.9

96
.7

96
.9

97
.0

92
.1

86
.0

83
.9

35
◦ C

95
.7

96
.7

96
.2

96
.3

97
.3

99
.9

97
.6

97
.1

97
.4

96
.8

97
.4

97
.4

97
.4

93
.0

87
.5

84
.4

36
◦ C

94
.6

95
.7

95
.1

95
.9

96
.9

97
.4

99
.9

97
.5

97
.6

97
.3

97
.5

97
.4

97
.5

93
.5

87
.8

85
.3

37
◦ C

93
.9

94
.4

94
.5

94
.4

95
.9

97
.0

97
.5

99
.9

98
.2

98
.1

98
.1

98
.0

97
.9

94
.0

89
.0

86
.3

38
◦ C

91
.9

93
.9

93
.6

93
.0

94
.9

95
.9

96
.6

97
.8

99
.8

97
.9

98
.1

98
.1

97
.9

94
.1

89
.4

85
.7

39
◦ C

89
.7

92
.1

92
.7

91
.7

93
.9

94
.9

95
.2

96
.5

97
.4

99
.9

98
.4

98
.4

98
.5

95
.9

91
.5

88
.3

40
◦ C

89
.8

92
.4

92
.3

91
.2

92
.5

93
.4

94
.4

95
.8

97
.4

98
.3

99
.9

98
.7

98
.8

96
.6

93
.1

89
.7

41
◦ C

87
.2

90
.3

90
.9

89
.3

91
.5

92
.9

93
.2

94
.3

97
.0

97
.8

98
.6

10
0.

0
99

.0
96

.8
94

.0
91

.0
42

◦ C
86

.7
89

.0
89

.6
88

.3
90

.6
91

.4
92

.0
93

.6
96

.6
97

.8
98

.5
98

.9
10

0.
0

98
.1

95
.9

93
.1

43
◦ C

85
.2

88
.4

88
.8

87
.0

89
.6

90
.4

89
.8

90
.6

94
.2

96
.4

97
.1

98
.2

98
.9

99
.9

97
.3

96
.3

44
◦ C

83
.5

87
.3

88
.3

86
.3

88
.9

89
.4

89
.0

89
.8

93
.6

95
.6

96
.7

97
.9

98
.6

98
.5

99
.9

97
.0

45
◦ C

83
.9

87
.4

88
.3

86
.2

88
.9

89
.8

89
.1

89
.8

93
.2

95
.5

96
.2

97
.4

98
.2

97
.9

97
.4

99
.8

91

We only showed the representative range 30 ◦C to 45 ◦C, because the results
in range 20 ◦C to 60 ◦C is similar to the results in representative range. The
rows of Table 18 shows the training data, and the columns show the testing
data in each temperature. For instance, from Table 18, the mean accuracy was
80.5 % when a model constructed using the training data of 30 ◦C classified the
testing data of 45 ◦C. Hence, we confirmed that the mean accuracy decreases
as the difference between the training data temperature and the testing data
temperature increases.

92

Ta
bl

e
19

:
M

ea
n

ac
cu

ra
ci

es
un

de
r

di
ffe

re
nt

te
m

pe
ra

tu
re

in
C

A
N

bu
s

pr
ot

ot
yp

e
(e

ig
ht

fe
at

ur
es

an
d

te
m

pe
ra

tu
re

).

Te
st

in
g

da
ta

30
◦ C

31
◦ C

32
◦ C

33
◦ C

34
◦ C

35
◦ C

36
◦ C

37
◦ C

38
◦ C

39
◦ C

40
◦ C

41
◦ C

42
◦ C

43
◦ C

44
◦ C

45
◦ C

R
ob

ou
st

M
od

el
99

.8
99

.8
99

.8
99

.8
99

.8
99

.8
99

.8
99

.7
99

.3
99

.3
99

.3
99

.2
99

.2
99

.2
99

.3
99

.3

93

Next, we show the mean accuracies of the learned Random Forest model in
case that temperature is added to one of the feature. As shown in Table 19, the
model achieved 99 % of accuracy in all data from 30 ◦C to 45 ◦C. Therefore, we
conclude that it is possible to construct a robust learned model against feature
drift due to drift of temperature by adding temperature as a feature.

5.4.5 Detection Time

In this section, we evaluate the detection time of PLI-TDC from feature extraction
phase to classification phase. First, we describe the details of the experimental
device. The experiment was conducted on a Raspberry Pi model B+ with 1.2GHz
64-bit quad-core Cortex-A53 CPU, 1GB RAM, and Debian 10. In our experiment,
PLI-TDC executed the inference of the Random Forest classifier (# of tree is 50)
implemented in C++ per receiving the CAN messages. As a result, the time of the
feature extraction phase was 13.590 µs, and the classification phase was 50.217 µs.
Therefore, we concluded that the detection time in PLI-TDC is 63.807 µs.

5.5 Discussion

5.5.1 Identification / Detection Accuracy

The mean accuracies of PLI-TDC in CAN bus prototype and real-vehicle were
99.67 % and 97.04 %, respectively. The results of classifying the data observed
with the same time-resolution (20 ns) as Divider [79] were 81.43 % and 76.75 %,
respectively. Besides, we evaluated the mean accuracy rate of PLI-TDC un-
der different time-resolution in the CAN bus prototype. We can change the
time-resolution by regarding multiple delay cells in TDC as one delay-cell. For
example, when delay-time per one delay-cell is 0.154 ns, we can obtain the time-
resolution 0.616 ns by regarding four delay-cells as one delay-cell. Table 20 shows
the mean accuracy of PLI-TDC under different time-resolutions. Also, the eight
features selected by Relief-F were used for Random Forest classifier. As shown
in Table 20, we confirmed that the mean accuracy is increased by improving the
time-resolution. Therefore, we concluded that the mean accuracy of PLI-TDC
improves with high time-resolution. Since we confirmed that the mean accuracy
is increased by improving the time-resolution, we will try the wave union TDC

94

Table 20: Mean accuracy under different time-resolution.

time-resolution
20.000 7.700 3.850 1.540 0.616 0.154

[ns]
Mean accuracy

87.20 93.02 97.47 98.31 98.46 99.67
[%]

Table 21: Comparison among voltage-domain based methods in Accuracy of Iden-
tification (A.I.), Sampling Rate (S.R.), Best Number of Samplings per message
(B.N.S.), Worst Number of Samplings per message (W.N.S.), Time Complexity
in Feature extraction (T.C.F.), Detection Time (D.T.).

Ch
oi

et
al.

[11
]

Sc
iss

ion
[44

]

SI
M

PL
E

[23
]

EA
SI

[46
]

PL
I-T

DC

A.I. [%] 96.48 99.85 99.1 99.98 99.67
S.R. [MHz] 2000 20 0.5 1.4 ∼ 10 -
B.N.S. 136× 103 1360 34 20 5
W.N.S. 392× 103 3920 98 20 14
T.C.F. O(n log n) O(n log n) O(n) O(n) O(n)
D.T. [µs] - - 1.575 124.9 63.8

[97] which has a higher resolution than our TDC as future work.
In addition, we discuss a comparison of accuracy among some voltage-based

methods and PLI-TDC with Table 21. The accuracy of PLI-TDC is lower than
Scission and EASI. Particularly, EASI can identify the highest accuracy and few
numbers of samplings. However, in EASI, it is required to change the sampling
rate, because the required sampling rate depends on the length of the payload.
On the other hand, PLI-TDC can reliably measure the delay-time without the
additional effort, regardless of the data field length. In addition, changes in the
voltages may be caused by Electromagnetic Interference (EMI) sources. There-
fore, voltage-based IDS may cause unexpected false alarms. In the contrast,
PLI-TDC can mitigate this problem because the delay-time is a time-domain

95

characteristic not directly influenced by EMI. In addition, manipulation of the
delay-time by a remote attacker is expected to be challenging, as the attacker
would have to control the timing of the CAN signal with pico-second precision
from the software-layer.

Even with a limited number of ECUs in the real-vehicle, the accuracy of PLI-
TDC is still 97.04%. The 2.96% inaccuracy is due to two ECUs with almost
the same delay-time (i.e., ECU3 and ECU5 in the real vehicle). As result, PLI-
TDC may generate many false alarms per day. While PLI-TDC achieved the
lowest B.N.S. and W.N.S. close to the theoretical limit (Table 21), it means that
PLI-TDC has the potential to realize a highly accurate physical-layer IDS with
little additional computational complexity in combination with multiple physical
characteristics such as voltage and delay-time. Thus, we will try to combine
physical-characteristics to solve the problem of false alarms as future work.

5.5.2 Number of Samplings

Next, we discuss the number of samplings performed by sender identification
methods for each CAN message. Since the number of samplings to be processed
per one message influences the performance of PLI such as memory usage and
detection time, it is required to reduce the number of samplings in PLI.

The number of samplings per one CAN message for Choi’s method, Scission,
and SIMPLE depends on the length of the data field. Thus, we consider the case
when the data field is the shortest (0 byte) and longest (8 byte). If the data field
is the shortest (0 byte), the length of CAN message from SOF to CRC delimiter is
34 bit from Fig. 4. Also, when the bit rate of CAN is 500 kbps, the transmission
time for 1 bit is 2 µs. Hence, the sampling rate of each method is multiplied by
34×2×10−6. Thus, for instance, the best number of samplings in Choi’s method
is 2000 MHz×34×2×10−6 = 136×103. As a result, the best number of samplings
per one CAN message in Choi’s method, Scission, and SIMPLE is 136×103, 1360,
and 34, respectively. Similarly, if the data field is the longest (8 byte), the length
of the CAN message from SOF to CRC delimiter is 98 bit. Therefore, the worst
number of samplings is 392× 103, 3920, 98 respectively. Also, EASI’s number of
samplings is 20 for both best and worst. The number of samplings per message
in PLI-TDC depends on the number of signal transitions from 0 to 1, not the

96

length of the data field. Consequently, The minimum and the maximum number
of samplings of PLI-TDC are discussed with Arbitration ID 0x000, which has
a small number of bit transitions, and Arbitration ID 0x555, which has a large
number of transitions. As a result, the best number of samplings reached 5. The
worst number of samplings reached 14. The results show that PLI-TDC has the
least number of samplings at the data acquisition phase; in other words, PLI-TDC
has the smallest n at the feature extraction phase. Hence, the feature extraction
of PLI-TDC is possible with light processing.

Finally, we discuss computational complexity. The method of Choi et al. and
Scission use time and frequency domain features. Therefore, these methods need
O(n log n) time because these methods perform Fourier Transforms to calculate
the frequency domain feature. Also, the feature extraction phases of SIMPLE
and EASI takes O(n). Because PLI-TDC uses statistic features in Table 9, PLI-
TDC needs O(n). Therefore, we confirmed that the computational complexities
of SIMPLE, EASI, and PLI-TDC are lower than the computational complexities
of other methods.

From these comparisons among related works, we confirmed that PLI-TDC
can reduce the amount of data in the data acquisition phase than the other
voltage-based methods.

5.5.3 Detection Time

We discuss whether PLI-TDC can identify all messages without spilling messages.
In Sec. 5.4.5, the evaluation of detection time was conducted on a Raspberry Pi
model B+ which used runs at a 1.2GHz 64-bit quad-core Cortex-A53 CPU. This
environment is the same as a specification of the system used for autonomous,
in-vehicle infotainment, and gateway function [85]. Thus, the experiment envi-
ronment of PLI-TDC can be implemented in actual vehicles.

As described in Sec. 5.4.5, PLI-TDC’s detection time is 63.807 µs. The de-
tection time is illustrated as shown in Fig. 34. A minimum interval of between
two CAN frames is 222 µs in CAN of 500 kbps. Since the detection time is lower
than the minimum interval in CAN, we conclude that PLI-TDC can validate all
CAN messages without spilling messages.

97

Data Acquisition
of CAN Frame

Feature
Extraction

Classification Based
on Machine Learning

CAN Signal (High, Low)

ECUs
Legitimate

or
Malicious

Train

Test

Proposed Physical-Layer Identification

FPGA Microcomputer

50.217μs
(Random Forest, # of tree=50)

63.807μs

13.590μs

Data Acquisition
of CAN Frame

Feature
Extraction

Classification Based
on Machine Learning

CAN Signal (High, Low)

ECUs
Legitimate

or
Malicious

Train

Test

Proposed Physical-Layer Identification

FPGA Microcomputer

Data Acquisition
of CAN Frame

Feature
Extraction

Classification Based
on Machine Learning

CAN Signal (High, Low)

ECUs
Legitimate

or
Malicious

Train

Test

Proposed Physical-Layer Identification

FPGA Microcomputer

Figure 34: Detection time on PLI-TDC.

5.5.4 Stability and Life-Cycle

In this section, we describe the stability of the delay-time and life-cycle of the
learned model in PLI-TDC. PLI-TDC may not adapt long-term gradual feature
drift caused by material wear and so on. Thus, we collected the 24 GB of data
for 86 days from the real-vehicle. However, we could not find any gradual drift of
delay-time in the 86 days. Hence, we confirmed that PLI-TDC has the stability of
feature at least 86 days. We also recommend updating a delay-time based model
after 86 days from deploying the model. Besides, as the other feature drift, in
case of sudden drift caused by some fail, we can update immediately a learned
model because Random Forest classifiers can learn data fastly with a few seconds
[102].

5.5.5 Comparison with Time Domain Reflectometry

Time Domain Reflectometry (TDR) based PLI [83] has been proposed as an
approach to detect the connection of an illegal device based on the variation of
the characteristic impedance of the cable in CAN-H, CAN-L, and other CANs.
In this method, an impulse signal is applied to a CAN from a pulse generator,
and the returned reflection waveform is observed by an oscilloscope. Thus, the
method using TDR can be regarded as an active method in which an IDS that
detects a rogue device applies a signal to the CAN for measurement. In other
words, the application of the measurement signal may interfere with the CAN
communication when the vehicle is in operation. Therefore, it is necessary to
consider a passive method that can detect an illegal device message by simply
observing the CAN message. On the other hand, our PLI-TDC only requires

98

observing the delay-time characteristics passively. Hence, we conclude that our
PLI-TDC can solve the drawbacks of TDR based PLI.

5.5.6 Limitation

We achieved a mean accuracy of 99.67 % and 97.04 % in the CAN bus prototype
and the real-vehicle, respectively. However, it may occur that EMI which is
interference to devices (e.g. ECU) by electromagnetic waves slightly changes the
delay-time in the actual operation of vehicles. In this case of the occurrence of
EMI on CAN and ECUs, PLI-TDC can adapt by updating a delay-time based
model after detection of the concept drift by EMI. Also, the updating scheme of
the machine learning model can be an attack-surface because an attacker tries
to inject malicious messages into training data. Fortunately, we can solve this
problem using message authentications. Message authentications can support
the creation of training data that does not contain injected malicious messages
because we can exclude malicious messages by forcing message authentications
during enabling the updating scheme.

Furthermore, we confirmed the robustness for the concept drift of temper-
ature. However, we suppose that the ambient temperature of IDS and ECUs
simultaneously increases like inside of cardboard (Fig. 33). In actual environ-
ments of vehicles, ECUs distribute at various places of vehicles. It means that
IDS and ECUs may not increase simultaneously in actual environments. In this
case that IDS and ECUs have a difference in ambient temperature, PLI-TDC
misclassifies the CAN messages sent by ECU which has a difference in ambient
temperature. Therefore, to address this type of concept drift, PLI-TDC may
require numerous temperature sensors in actual environments.

5.6 Conclusion

To avoid the security risk on automobiles, PLIs in CAN have been proposed. To
meet requirements of high accuracy, the small number of samplings of feature, and
robustness against temperature change, we proposed a delay-time based sender
identification called PLI-TDC which is higher accuracy than Divider and gets
the features with a few sampling. In addition, PLI-TDC realizes temperature-

99

robustness by learning the temperature as one of the features. We implemented
the experimental devices using FPGA and microcomputer to verify our method
for identification. As a result, we confirm that PLI-TDC achieved a mean ac-
curacy of 99.67 % in the CAN bus prototype and of 97.04 % in the real-vehicle.
We have released our research [74] in the hope to promote research on sender
identification.

100

6. IVNProtect: Isolable and Traceable Lightweight
CAN-Bus Kernel-Level Protection

6.1 Introduction

Encryption and authentication [81, 52] for CAN have been proposed to prevent
spoofing attacks from a compromised ECU. However, encryption and authen-
tication mechanisms cannot deal with DoS attacks since an attacker can flood
encrypted CAN-bus with DoS using a high-priority ID. Therefore, a dedicated
countermeasure is required to prevent DoS attacks.

On the other hand, many automotive security researchers have proposed IDSs
based on various characteristics (e.g., frequency [88], entropy [98], ID sequence
[59], message correlation [61, 76], physical-layer fingerprint [44, 46, 78]). These
IDSs achieved the detection of various attacks including DoS attacks with high
accuracy. However, these IDSs do not provide any defense mechanism to pro-
tect against the DoS attacks. Therefore, it is necessary to build a protection
mechanism with features from attack detection to defense.

Some countermeasures to disable DoS attacks on CAN have been researched.
The allowlist-based mitigation method [21] has been proposed as one of the coun-
termeasures. This method filters message transmission based on a predefined
allowlist on a CAN-specific hardware. It can disable DoS attacks with the high-
est priority CAN ID:0x000; in other words, it passes only allowlisted messages
based DoS attacks permanently. Hence, it is ideal for mitigating and isolating
a DoS attacker who uses both malicious and benign messages. Moreover, this
method requires additional hardware; therefore, it also has a drawback in deploy-
ability. On the other hand, a frame-corruption method [90] conducts malicious
frame-corruption with error frames by a legitimate ECU with IDS. This method
transfers a compromised ECU to bus-off state, which is a disconnected state of
an ECU from the CAN-bus (i.e., an ECU in the bus-off state cannot send/receive
CAN messages). Originally, the bus-off state is designed to handle a fault in
the ECUs, so that the frame-corruption method cannot distinguish whether the
bus-off state occurred due to a fault or a security incident. In consequence, if the
bus-off state of a compromised ECU occurs due to a security incident, the other

101

ECUs cannot conduct incident response operations such as switching to manual
operation of the vehicle. In other words, if there is a protection method that can
distinguish whether the bus-off state occurred through a fault or a security inci-
dent, the ECUs on the attacked vehicle can conduct some operations to minimize
the security risk. In summary, these countermeasures have problems in terms of
the isolability of a compromised ECU, deployability, and the traceability of the
root cause for isolation.

To solve these drawbacks, we propose an isolable and traceable In-Vehicle
Network bus kernel-level Protection approach called IVNProtect. IVNPro-
tect can be installed on an ECU that has a wireless interface with just a soft-
ware update because it is implemented in the CAN-bus kernel driver. We also
confirm that our IVNProtect can mitigate two types of DoS attacks without
distinguishing malicious/benign CAN IDs. After mitigating DoS attacks, IVN-
Protect isolates a compromised ECU with a security error state mechanism,
which handles the security error in IVNProtect. Furthermore, we evaluate the
traceability that an ECU with IVNProtect, which can report warning mes-
sages to the other ECUs on the bus even while being forced to send DoS attacks
by an attacker. In addition, we experimentally show that the ECU installed
IVNProtect can send the warning messages with 0 % of transmission loss rate.
Moreover, the overhead of IVNProtect is 9.049 µs, so that IVNProtect can
be installed on insecure ECUs with minimal side-effects. We release the source
code of our IVNProtect, which is available on a GitHub repository [75].

The main contributions of this paper can be summarized as follows.

• We propose an isolable and traceable lightweight CAN-bus protection called
IVNProtect. IVNProtect is implemented to a CAN-bus kernel driver
on Linux. Hence, our IVNProtect can deploy to an ECU by just software
updating.

• We provide a new error state mechanism on IVNProtect for handling
security incidents. IVNProtect mitigates DoS attacks and isolates a
compromised ECU based on this security error state mechanism.

• We experimentally confirm the traceability that IVNProtect reports
warning messages for legitimate ECUs to distinguish whether the cause

102

of isolation is a fault or security incident.

• We show the overhead caused by IVNProtect. As a result, the overhead
takes only 9.049 µs, which means that a system with our IVNProtect
satisfies in-vehicle real-time demands.

6.2 Related Work

Various intrusion detection methods (e.g., arrival time [88], entropy [98], and
voltage [44]), and authentication mechanisms [81, 52] have been studied in order
to secure IVNs. These intrusion detection methods focus on detecting spoofing,
replaying, and DoS attacks but do not provide protection against the attacks.
Conversely, the authentication mechanisms focus on protecting spoofing and re-
playing attacks. In other words, the existing intrusion detection methods and
authentication mechanisms cannot protect DoS attacks on CAN-bus.

In the rest of this section, we introduce some existing protection methods
dedicated to preventing DoS attacks.

6.2.1 Protections Implemented on Bus

Wu et al. proposed an ID-hopping moving target defense [39, 96, 99] to protect
a DoS attack against individual ECUs (called targeted DoS attacks) and reverse
engineering CAN messages. They implemented the ID-hopping mechanism to
the CAN controller, hardware embedded on an ECU. The ID-hopping is carried
out in all ECUs on the CAN-bus, so it is required to install the ID-hopping CAN
controller to all ECUs. While, it can protect against targeted DoS attacks, but
it cannot protect against DoS attacks with the highest priority CAN ID: 0x000.

A relays-based reactive defense called CANARY [34] divides the bus by ac-
tivating/deactivating some relays implemented on the bus. To protect the bus
against DoS attacks, CANARY divides the bus by deactivating the relays sur-
rounding the compromised ECU. A CANARY-based bus also has a Bus-Guardian
node that detects attacks and manipulates relays. Thus, even in the isolation of
the compromised ECU, the others ECUs can trace the root cause of isolation
via the Bus-Guardian ECU. However, since CANARY needs additional hardware
(relays, resistors, and wires), it has a drawback in deployment cost. Moreover,

103

the relay action has a negative aspect because it corrupts the benign message
sent during activating/deactivating relays.

6.2.2 IDS-side Protection

The frame-corruption approach [90] has been studied. This approach uses error
frames to forcibly transfer a targeted compromised ECU’s state to the bus-off
state. It is possible to send error frames with unmodified CAN controllers so that
the approach easily deploys ECUs through software update. However, because
the frame-corruption approach uses error frames, it is inherently difficult to distin-
guish whether the cause of isolation is a fault or a security incident. Furthermore,
the error frames generated by this approach contaminate the communication of
the bus, which negatively influences the arrival time of some messages and bus-
loads.

6.2.3 ECU-side Protections

Unlike the protections of IDS-side and on-bus, the ECU-side protection has an
advantage in unharming for messages on the bus when its protection is triggered.
Elend et al. developed a secure CAN transceiver [21] that filters message trans-
mission based on a predefined allowlist in the CAN transceiver. In other words,
the secure CAN transceiver protects a compromised ECU from sending malicious
ID messages. But, an attacker who compromised an ECU with this transceiver
can transmit some allowlisted messages permanently. Therefore, it is necessary
to deal with the flooding with malicious/benign ID. Moreover, the deployment
cost is high since it needs to replace the CAN transceiver hardware.

The most relevant research to our IVNProtect is TEECheck [63], proposed
by Mishra et al. TEECheck has advantages regarding the complete isolation
of a compromised ECU, traceability of the root cause of the bus-off state, and
unharming benign messages. This approach isolates a malicious process in a
compromised ECU using TrustZone, a Trusted Execution Environment (TEE).
Namely, TEECheck does not carry out the disconnection at ECU-unit such as the
division of buses using CANARY, because an attacker is isolated at the processing
unit. It means that TEECheck ensures traceability to the root cause of isolation
since an ECU with TEECheck only becomes the bus-off state caused by fault

104

incidents. On the other hand, the vulnerabilities/bugs related to the implemen-
tation of TrustZone have been reported [58, 35]. Therefore, an attacker possibly
exploits the TEE’s vulnerabilities for flooding the bus. In addition, TEECheck
can only deploy to ARM-based ECUs, so it has the limited deployability.

Table 22 shows a comparison between the aforementioned protections and
our proposal. The existing protections have problems in incomplete isolation,
traceability on the cause of isolation, deployment cost, and side-effect against
some benign messages of legitimate ECUs. Detailed comparisons of ECU-side
protections are discussed in section 6.6.1. To solve these problems, we propose
an isolable, traceable, and deployable kernel-level protection in the next section.

105

Ta
bl

e
22

:
C

om
pa

ris
on

am
on

g
C

A
N

-b
us

pr
ot

ec
tio

ns
in

Im
pl

em
en

ta
tio

n
Lo

ca
tio

n
(I

.L
.),

Is
ol

ab
ili

ty
,T

ra
ce

ab
ili

ty
fo

r
R

oo
t-

ca
us

eo
fI

so
la

tio
n

(T
.R

.I.
),

D
ep

lo
ym

en
tC

os
t(

D
.C

.),
H

ar
m

fo
rB

en
ig

n
M

es
sa

ge
so

fl
eg

iti
m

at
eE

C
U

s(
H

.B
.M

.).

C
A

N
A

RY
[3

4]
ID

-H
op

pi
ng

[3
9,

96
,9

9]
Fr

am
e-

C
or

ru
pt

io
n

[9
0]

El
en

d
et

al
.

[2
1]

T
EE

C
he

ck
[6

3]
IV

N
P

ro
te

ct

I.L
.

B
us

B
us

ID
S

EC
U

EC
U

EC
U

Is
ol

ab
ili

ty
C

om
pl

et
e

Pa
rt

ia
l

C
om

pl
et

e
Pa

rt
ia

l
C

om
pl

et
e

C
om

pl
et

e
T

.R
.I.

Ye
s

-
N

o
-

Ye
s

Ye
s

D
.C

.
H

ig
h

H
ig

h
Lo

w
H

ig
h

M
id

dl
e

Lo
w

H
.B

.M
.

H
ar

m
fu

l
H

ar
m

fu
l

H
ar

m
fu

l
U

nh
ar

m
fu

l
U

nh
ar

m
fu

l
U

nh
ar

m
fu

l

106

6.3 Proposed CAN-Bus Kernel-Level Protection

6.3.1 Threat Models

At first, we describe the assumption of the threat model. We assume that the
attacker has privileged access. But, the attacker cannot replace kernel mod-
ules because we suppose installed kernel modules are signed by a trusted party.
Moreover, the attacker also does not disrupt its kernel since the attacker only has
the motivation to disrupt CAN-bus communication. In other words, we assume
that the attacker does not shutdown attacks on the compromised system. In the
following section, we define two DoS attacks as threat models.

Malicious ID DoS
Malicious ID DoS is the most critical threat to CAN-bus communication.
This attack uses the highest priority ID (0x000) on CAN to fill the networks.
It brings unexpected vehicle behavior and stops some functions (e.g., power
steering).

Benign ID DoS
Benign ID DoS abuses the highest priority ID assigned to a compromised
ECU. In other words, benign ID DoS is a DoS attack using the highest
priority legitimate ID used by an actual ECU. It implies that benign ID
DoS is less aggressive than the aforementioned malicious ID DoS because
it is expected that some benign IDs are higher priority than the ID used
by benign ID DoS. However, benign ID DoS is still a critical threat against
some benign IDs that are lower priority than the ID used by benign ID
DoS.

6.3.2 Problem Statement

We design an isolable, traceable, and deployable kernel-level protection (IVNProtect)
that satisfies the following statements.

P1: Prevent DoS attacks (malicious ID DoS and benign ID DoS)
An attacker tries to flood the CAN bus by sending numerous messages. To
deal with the attacker, IVNProtect monitors the CAN IDs of transmitted

107

messages in the compromised ECU. In the case CAN ID of a transmitted
message is not a benign ID (i.e., not an allowlisted ID), IVNProtect can-
cels the message transmission. In contrast, if the CAN ID of a transmitted
message is a benign ID, IVNProtect also analyzes the context of the
transmitted IDs and then reduces the transmission rate if the context is an
anomaly.

P2: Isolate a compromised ECU
To prevent the permanent malicious activity by an attacker in a compro-
mised ECU, our protection isolates such compromised ECUs from the CAN-
bus. However, it is important to determine when to isolate a compromised
ECU. Specifically, it is required that IVNProtect should isolate the com-
promised ECU after reporting some warning messages to the other ECUs
on the bus because the other ECUs can change some operations to minimize
the security risk after receiving the warning messages. For instance, if the
attacked vehicle has autonomous functions, the other ECUs can switch to
manual operations to prevent exploiting autonomous functions.

P3: Report warning messages during DoS
As described in P2, IVNProtect must isolate the compromised ECU
after reporting some warning messages. To ensure working this function,
IVNProtect is required to satisfy the following requirements:

1. A benign transmission loss rate of 0 % during DoS activities

2. A worst arrival time of benign messages, less than isolation time by
IVNProtect

3. A higher priority of warning messages than the others IDs

P4: Deploy IVNProtect with a slight overhead
Due to deploying to resource-constrained ECUs, we must minimize the over-
head caused by running IVNProtect. Specifically, we define a require-
ment that the IVNProtect’s overhead must be below 494 µs which is the
transmission overhead by TEECheck [63].

108

6.3.3 Overview of IVNProtect

IVNProtect consists of four stages, allowlist and similarity-based detection
modules, security error states, sending function and discarding function, as shown
in Fig. 35. In the allowlist and similarity-based detection modules stage, these
modules detect malicious ID and benign ID DoS attacks. In the security error
states stage, the security error such as DoS attacks is managed by the state in
this stage. Finally, IVNProtect determines whether to send the CAN message
or discard it based on the state of security error states stage. Also, by installing
IVNProtect to all ECU on CAN, it is possible to isolate a compromised ECU
no matter which compromised ECU the attacker intrudes in.

Also, we assume that IVNProtect is installed on Linux-based ECUs such
as AGL based in-vehicle infotainment system [87], because such ECUs with entry
points to external networks have been compromised in the actual hacking [71, 62].
In the following sections, we describe each stage in order.

109

Be
ni

gn

Pr
oc

es
s

CA
N

 C
on

tr
ol

le
r

Al
lo

w
lis

t-
Ba

se
d

D
et

ec
tio

n
fo

r
M

al
ic

io
us

 ID
Si

m
ila

rit
y-

Ba
se

d
D

et
ec

tio
n

fo
r

Be
ni

gn
 ID

Se
cu

rit
y

Er
ro

r
St

at
es

D
is

ca
rd

in
g

Fu
nc

tio
n

Se
nd

in
g

Fu
nc

tio
n

CA
N

 K
er

ne
l D

riv
er

w

ith
 IV

N
Pr

ot
ec

t

ke
rn
el

us
er

Be
ng

in
M

es
sa

ge
0x

B4
.0

0…

M
al

ic
io

us
or

Be

ni
gn

ID
 D

at
a

ID
 D

at
aID

 D
at

a
0x

B4
.0

0…

M
al

ic
io

us
M

es
sa

ge
0x

6A
F.

FD
…

Fi
gu

re
35

:
D

ia
gr

am
of

th
e

pr
op

os
ed

IV
N

Pr
ot

ec
t.

110

6.3.4 Detection Modules

To solve P1, we provide two detection modules in this section. Based on the re-
sults of these modules, IVNProtect determines whether to conduct protection
procedures (dropping messages or inserting a delay). The first is the allowlist-
based detection module, which is introduced to prevent malicious ID DoS. The
second one is the similarity-analysis-based detection module, which can detect
benign ID DoS.

Allowlist-Based Detection Module
To disable malicious ID DoS, we add a module that discards incoming
messages based on an allowlist of CAN IDs. We assume that this allowlist
is pre-defined in the CAN-bus kernel driver before factory shipment based on
the CAN IDs that the ECU sends. Therefore, if an attacker who intrudes
on the ECU installing IVNProtect and tries to modify the allowlist,
the attacker has to replace the CAN-bus kernel driver with the attacker’s
driver. We also suppose that the original CAN-bus kernel driver is signed
by a trusted party such as automotive suppliers. It implies that the attacker
cannot replace the original CAN-bus kernel driver with the attacker’s driver.

Similarity Analysis-Based Detection Module
To prevent benign ID DoS, we provide the similarity-analysis-based detec-
tion module in this section. This module uses a similarity-analysis-based
detection method [76] to detect DoS attacks quickly by a single ID or ran-
domized IDs. This detection method detects DoS attacks by calculating
the similarity (called Simpson coefficient) between Window IDs (WIDs)
and Criterion IDs (CIDs). The CIDs are composed of the W number of
benign CAN IDs, which are pre-defined before the detection-phase. The
WIDs include the W number of the latest CAN IDs of recently received
CAN messages. CIDs and W are pre-defined by an optimization algorithm
based on SA before the detection-phase. As one example, we show the
pre-defined parameters calculated from our evaluation dataset using the

111

SA-based algorithm [76] as follows.

W =7,

σs =0.3414,

CIDs ={0x3b8, 0x3b9, 0x3ba, 0x3ba, 0x3bc, 0x3bd, 0x463}

where σs is the deviation of benign similarity.

This method also requires defining these parameters in the CAN-bus kernel
driver as with the allowlist-based detection module. These parameters are
calculated and pre-defined before factory shipment for each ECUs. Thus,
as with the allowlist-based detection module, these parameters related to
similarity-analysis-based detection are protected from the attacker’s modi-
fication.

6.3.5 Security Error State Mechanism

To meet P2 and P3, we employ a security error state mechanism (Fig. 36) for
the isolation of a compromised ECU, inspired by the fault error state mecha-
nism specified in CAN. This section explains the functions and the statements of
transition in each state.

Security Error Active State
Security error active state implies that there is no security incident so that
IVNProtect does not execute any functions in this state. As shown in
Fig. 36 (a), if a detection module (e.g., allowlist-based detection) finds
some malicious activity in this state, the ECU immediately transfers to the
following security error passive state.

Security Error Passive State
Security error passive state expresses that DoS attack activity has begun
to be observed. For example, as shown in Fig. 36 (b), this state is entered
when an ID outside the allowlist is sent (i.e., ID violation error). The
security error states for both malicious and benign DoS attacks are shown
in Fig. 36 (c). As the same as Fig. 36 (b) this state is entered when an ID
outside the allowlist is sent (i.e., ID violation error). In addition, in case of

112

Sec. error
passive

Sec.
bus-off

Sec. error
active

detection counter ≥ 1

detection counter < 1
detection
counter > 255

Reset

(a) General security error states.

Sec. error
passive

Sec.
bus-off

Sec. error
active

ID violation error ≥ 1

ID violation error < 1
ID violation
error > 255

Reset

(b) Security error states for malicious ID DoS.

Sec. error
passive

Sec.
bus-off

Sec. error
active

Similarity error ≥ 1 OR
ID violation error ≥ 1

Similarity error < 1 AND
ID violation error < 1

Similarity error > 255 OR
ID violation error > 255

Reset

(c) Security error states for malicious/benign ID DoS.

Figure 36: Security (Sec.) error states on IVNProtect.

113

sending messages with malignant similarity, this state also is entered. We
define the case of sending messages with malignant similarity as similarity
error.

Moreover, a compromised ECU reports a warning message for the other
ECUs to change some operations to minimize the security risk. For instance,
if the attacked vehicle has autonomous functions, the not compromised
ECUs can change to manual operations to prevent exploiting autonomous
functions.

Security Bus-off State
Security bus-off state completely disables the ability to send and receive to
isolate a compromised ECU. This state can prevent an attacker from sending
benign ID messages permanently or spreading the attacker’s infection with
some software updating scheme on CAN (e.g., ISO-TP).

This state is entered if either a lot of similarity error or an ID violation
error increases. However, it is important to determine when to isolate the
compromised ECU. The optimal threshold is defined in Sec. 6.6.2.

6.4 Implementation

In this section, we describe the implementation of IVNProtect. We imple-
mented the procedures related to IVNProtect to the CAN-bus kernel driver
[91] in Linux kernel v.5.10.

First, we explain the procedures of detection modules. We add the allowlist-
and similarity analysis-based detection to the message transmission function
mcp251x_tx_work_handler(). Algorithm 4 provides the message transmission
function including IVNProtect procedures.

To implement the allowlist-based discarding messages, we used two Linux ker-
nel functions, dev_kfree_skb() (line 35), which frees a buffer for storing packet
data, and netif_wake_queue() (line 36), which wakes up the currently stopped
queue and asks the kernel to resume sending messages. Specifically, in case of
transmission of malicious ID, our IVNProtect executes dev_kfree_skb() to
eliminate malicious transmission and then netif_wake_queue() to immediately
resume next sending for benign messages. By the way, note that the other CAN

114

Algorithm 4 CAN message transmission algorithm in a kernel driver with IVN-
Protect (Part 1).
Input: can_priv, WIDs, CIDs, W, allowlist

Output: None
1: function calculate_similarity(set1, set2, set_size)
2: return |set1∩set2|

set_size

3: end function
4:

5: can_frame⇐ can_priv->packet_data;
6: similarity ⇐ 0;
7: is_ID_violation_error ⇐ False;
8: is_similarity_error ⇐ False;
9:

10: // calculate similarity
11: can_frame->can_id is added to WIDs

12: if ++window_idx ≥ W then
13: similarity ⇐ calculate_similarity(WIDs, CIDs, W);
14: window_idx⇐ 0;
15: memset(WIDs, 0, sizeof(WIDs)); // initialize WIDs

16: end if
17:

18: // validate CAN ID and similarity
19: mutex_lock(&can_priv)
20: if can_frame->can_id is not in allowlist then
21: can_priv->can_device_sec_stats->ID_violation_error++;
22: is_ID_violation_error ⇐ True;
23: update can_priv->sec_state

24: else if similarity exceeds a benign range defined by σs then
25: can_priv->can_device_sec_stats->similarity_error++;
26: is_similarity_error ⇐ True;
27: update can_priv->sec_state

28: end if
29:

115

Algorithm 4 CAN message transmission algorithm in a kernel driver with IVN-
Protect (Part 2).
30: // send CAN message
31: if can_priv->sec_state is Security bus-off state then
32: free the packet data in can_priv with dev_kfree_skb()
33: else if then
34: if is_ID_violation_error then
35: free the packet data in can_priv with dev_kfree_skb()
36: wake up the CAN device with netif_wake_queue()
37: else if is_similarity_error then
38: mdelay(10);
39: end if
40: send CAN message of can_priv->packet_data

41: end if
42: mutex_unlock(&can_priv)

kernel driver also has the message transmission function like
mcp251x_tx_work_handler(). Therefore, IVNProtect can be implemented
on various CAN peripherals.

Next, we describe the detail of similarity analysis-based detection. To imple-
ment the module, we added a new similarity calculation function (line 1-3) and
some variants for the calculation. IVNProtect conducts the similarity calcula-
tion per fixed messages (line 11-16). Additionally, in case of malignant similarity,
IVNProtect executes delay function mdelay(10) (line 38), which stops the
sending procedure during 10 ms.

Finally, we explain the implementation of security error states. At first, we
added two member variants, enum sec_state and struct can_device_sec_stats
into struct can_priv which contains CAN common private data such as error
state, sending data, etc. The sec_state expresses the current security error state
of the CAN interface; for example, if sec_state is 0, it expresses that the current
state is the security error active state. The
can_device_sec_stats contains the detection counter, such as ID violation er-
ror for security error states. Thus, if the detection module discovers some mali-

116

cious activities, the detection counter in can_device_sec_stats increases. Then,
IVNProtect manages the security error states based on this detection counter
in can_device_sec_stats in our implementation.

6.5 Evaluation

6.5.1 Environment and Dataset

In this section, we explain our experimental environment and the specification
of devices. At first, we set up the experimental CAN-bus in our laboratory.
This CAN-bus includes three ECUs, (1) a Raspberry Pi 3 Model B with IVN-
Protect, (2) an actual combination-meter ECU that automatically sends CAN
messages, (3) an experimental ECU which is called ECUsim 2000 which supplies
the power to the bus.

To emulate the CAN messages sent by one ECU, we logged 10090 messages
from the actual combination-meter ECU. Hereafter, we evaluated various metrics
of our IVNProtect, such as transmission loss rate and transmission delay when
a DoS attack is performed while sending this 10090 message.

6.5.2 Prevention of DoS Attacks

At first, we evaluate the ability of IVNProtect to prevent DoS attacks. To
evaluate this ability, we made Raspberry Pi 3 Model B both with and without
IVNProtect, which simultaneously sends 10090 benign messages and DoS at-
tacks. We show the comparison of busloads with and without IVNProtect in
Fig. 37. As shown in Fig. 37 (a), in the case without IVNProtect, the busload
reached over 45 % during DoS attacks.

In contrast, as shown in Fig. 37 (b), we confirmed that IVNProtect mit-
igated DoS attacks. Specifically, in the case of sending benign messages and
malicious ID DoS simultaneously, there was no increase in busload. It means
that the allowlist-based message discarding works against malicious ID DoS ef-
fectively. Next, we describe the case of sending benign messages and benign ID
DoS. Since the allowlist of IVNProtect includes the benign ID used by the
benign ID DoS, benign ID DoS passes the allowlist-based message discarding.
However, due to the malignant similarity of transmission messages, IVNPro-

117

tect inserts a delay to mitigate flooding. As shown in Fig. 37 (b), we confirm
that the busload is reduced to about 12 % by inserting the delay. Considering the
busload of only benign messages is about 1 %, IVNProtect allows the benign
ID DoS to increase the busload by 11 %. In general, the busloads of the real-
world CAN-buses are limited to about 20 % in order to avoid unacceptable delays
for low-priority messages. Thus, when an attacker executes benign ID DoS, the
busload of real CAN-bus increases up to 31 %. From this result, we conclude that
an attacker cannot achieve DoS attacks on the bus because the ECUs can send
benign messages normally with a busload of about 31 %.

6.5.3 Isolation Time

Next, we evaluate the isolation time, which expresses from starts from the DoS
attacks to isolation by IVNProtect. Like the previous experiment, we had the
Raspberry Pi 3 Model B send 10090 benign messages and DoS attacks simulta-
neously. In Fig. 38, we show the isolation times with different thresholds of the
detection counter for transferring the security bus-off state. As shown in Fig. 38
(a), we confirm that the maximum isolation time is 170 ms if the threshold is 255.
Additionally, as shown in Fig. 38 (b), we confirm that the maximum isolation
time is 4.073 s if the threshold is 255. In other words, we conclude that there is
the time (170 ms and 4.073 s) to report some warning messages for malicious and
benign ID DoS, respectively.

6.5.4 Benign Transmission Loss Rate under DoS Attacks

To ensure that IVNProtect can report the warning messages, we evaluate the
transmission loss rate of benign messages during DoS attacks. Fig. 39 shows
the benign transmission loss rate of IVNProtect during DoS attacks. The
transmission loss rate is 0 % when the transmission queue length is over 350.
Thus, we set the transmission queue length to 350 in the following evaluations.

6.5.5 Benign Transmission Delay under DoS Attacks

To verify the number of messages that IVNProtect can send during a DoS
attack, we evaluate the transmission delay of benign messages during DoS attacks.

118

0 20 40 60 80
Time [s]

0

50

100

150

200

250

300
Bi

tra
te

 [k
bp

s]

Benign (10090 messages)
Benign + Malicious ID DoS
Benign + Benign ID DoS

0

10

20

30

40

50

60

Bu
slo

ad
 [%

]

(a) Without IVNProtect.

0 20 40 60 80
Time [s]

0

50

100

150

200

250

300

Bi
tra

te
 [k

bp
s]

Benign (10090 messages)
Benign + Malicious ID DoS
Benign + Benign ID DoS

0

10

20

30

40

50

60
Bu

slo
ad

 [%
]

(b) With IVNProtect.

Figure 37: Comparison of bitrate and busload between with and without IVN-
Protect.

119

1 7 15 31 63 127 255
Threshold of detection counter for security bus-off state

0

25

50

75

100

125

150

175
Iso

la
tio

n
tim

e
[m

s]

(a) Malicious ID DoS.

1 7 15 31 63 127 255
Threshold of detection counter for security bus-off state

0

500

1000

1500

2000

2500

3000

3500

4000

Iso
la

tio
n

tim
e

[m
s]

(b) Benign ID DoS.

Figure 38: Isolation time under different thresholds of detection counter for se-
curity bus-off state. 120

0 100 200 300 400 500
Queue length

0

2000

4000

6000

8000

10000

of

 lo
st

 fr
am

es

Malicious ID DoS (1ms)
Malicious ID DoS (300 s)
Benign ID DoS (1ms)
Benign ID DoS (300 s)

0

20

40

60

80

100

Tr
an

sm
iss

io
n

lo
ss

 ra
te

 [%
]

Figure 39: Benign transmission (10090 messages) loss rate under different tx
queue size during DoS attacks.

121

Table 23: Statistics of the arrival time of benign messages.

Traffic Mean Stddev Max
[ms] [ms] [ms]

benign 99.977 4.916 111.085
benign+malicious ID DoS (1ms) 99.977 4.709 111.146
benign+malicious ID DoS (300µs) 99.977 5.055 110.976
benign+benign ID DoS (1ms) 100.040 75.665 199.989
benign+benign ID DoS (300µs) 99.989 115.637 333.057

Table 23 shows the arrival time of benign messages during various DoS attacks.
The benign traffic in Table 23 expresses the arrival time of benign messages
without sending DoS attacks. The benign + malicious ID DoS (1ms) represents
the arrival time of benign messages during malicious DoS attacks, which send
messages per 1 ms. Similarly, benign + malicious ID DoS (300 µs) represents the
arrival time of benign messages during malicious DoS attacks (300 µs), which is
the maximum transmission rate.

Comparing benign with benign + malicious ID DoS in Table 23, we confirm
that IVNProtect does not affect the arrival time of benign messages during
malicious ID DoS. In contrast, in benign ID DoS, the maximum delay of benign
messages is 199.989 ms and 333.057 ms. In other words, if IVNProtect isolates
compromised ECU at 333.057 ms after the occurrence of DoS attacks, IVNPro-
tect can send at least one message. Based on this evaluation, we determine the
optimal threshold for transferring security bus-off state in 6.6.2.

6.5.6 Overhead with IVNProtect

In this section, we evaluate the overhead with IVNProtect. To evaluate the
overhead, we considered two cases: the Raspberry Pi 3 Model B sends 1000
benign messages with and without IVNProtect. Then, we measured the av-
erage time between starting to send a benign message and finishing it. As a
result, we observed that in the case without IVNProtect, the average time
was 20.090 193 ms, while in the case with IVNProtect, it was 20.099 242 ms.
The overhead with IVNProtect is 9.049 µs, which is less than the TEECheck’s

122

(494 µs), so we confirm that IVNProtect does not affect on benign messages.

6.6 Discussion

6.6.1 Comparison among ECU-side Protections

In this section, we compare IVNProtect with previous protections. As de-
scribed in Sec. 6.2, IVNProtect has advantages in terms of unharming mes-
sages on the bus when its protection is triggered unlike IDS-side and on-bus
protections.

Next, we compare IVNProtect with previous ECU-side protections. Table
24 shows a comparison among the ECU-side protections and IVNProtect. As
described in Sec. 6.2, the secure CAN transceiver proposed by Elend et al. [21]
can be bypassed using some allowlisted messages so it is effective only against
malicious ID DoS attacks. In addition, the secure CAN transceiver uses the leaky-
bucket algorithm to manipulate the sending rate of CAN messages. Additionally,
it causes the transmission loss rate of benign messages during DoS attacks to
increases. Therefore, the secure CAN transceiver cannot report warning messages
to others ECUs on the bus while being forced to send DoS attacks by an attacker.

TEECheck [63] proposed by Mishra et al. has advantages regarding the com-
plete isolation of a compromised ECU, traceability of the root cause of the bus-off
state, and benign messages that are not harmful. However, TEECheck can deploy
only to ARM-based ECUs, so it has the limitation of deployability. Moreover,
Mishra et al. assume that ECUs with TEECheck send only periodic messages
as a real-time task model. In other words, TEECheck cannot be deployed to
ECUs which carry out aperiodic tasks. In CAN-bus, aperiodic tasks are generally
implemented in real-world ECUs, which these tasks are used to implement event-
triggered tasks such as airbag control. Therefore, we conclude that TEECheck
has a severe limitation of deployment for ECUs with aperiodic tasks.

In contrast, our IVNProtect allows the aperiodic tasks to send the mes-
sages because the similarity analysis-based detection module does not detect the
aperiodic messages as malicious messages [76]. In addition, IVNProtect can
be installed to an ECU just by software updating without the limitation of hard-
ware such as requiring TrustZone. From the above comparison, IVNProtect

123

Table 24: Comparison among ECU-side protections in Isolability, Traceability for
Root-cause of Isolation (T.R.I.), Deployment Cost (D.C.), Harm for Benign Mes-
sages of legitimate ECUs (H.B.M.), Adaptation of Aperiodic Messages (A.A.M.),
benign Transmission Loss Rate during DoS attacks (T.L.R.).

Elend et al. [21] TEECheck [63] IVNProtect

Isolability Partial Complete Complete
T.R.I. - Yes Yes
D.C. High Middle Low
H.B.M. Unharmful Unharmful Unharmful
A.A.M. Yes No Yes
T.L.R. ≫ 0% 0% 0%

has advantages in isolability, deployability, and adaptation to aperiodic tasks.

6.6.2 Warning Response using IVNProtect

For P3 described in Sec. 6.3.2, IVNProtect must isolate the compromised ECU
after reporting some warning messages. To ensure this function work, IVNPro-
tect is required to satisfy the following requirements:

1. A benign transmission loss rate of 0 % during DoS activities

2. A worst arrival time of benign messages less than isolation time by IVN-
Protect

3. A higher priority of warning messages than the others IDs

As described in Sec. 6.5.4, we confirmed that IVNProtect satisfies the first
requirement that the benign transmission loss rate during DoS activities is 0 %.
The second requirement depends on the thresholds of the detection counter for
transferring the security bus-off state. Specifically, the worst arrival time of be-
nign messages is 0.110976s and 0.333057s for malicious and benign DoS attacks,
respectively. Hence, for the second requirement, IVNProtect must isolate the
compromised ECU after these times when starting attacks. From the evaluation

124

of isolation time (Sec. 6.5.3), IVNProtect can satisfy the requirement if the
thresholds of ID violation error and similarity error are 255 and 31, respectively.
Finally, we discuss the third requirement that the ID of warning messages re-
quires a higher priority than the other IDs on the bus. To prevent conflicting the
warning messages and the other messages, IVNProtect must send the warning
messages with the highest priority ID on the bus. Fortunately, we easily solve
this problem because such IDs generally exist in the real-world CAN-bus. For
example, since the highest ID of our lab’s vehicle is 0x020, we can use the IDs
over 0x020 as warning messages.

We conclude that IVNProtect can report the warning messages during DoS
attacks if the thresholds of ID violation error and similarity error are 255 and 31
and the ID of warning messages is higher than the other messages on the bus.

6.7 Limitation

In this section, we elaborate on the limitation of IVNProtect. IVNProtect
can detect malicious ID DoS and benign ID DoS by allowlist and similarity-
analysis. The similarity-analysis module detects the DoS attacks if the similarity
of CAN messages exceeds a benign range defined by σs. Thus, if an attacker
tries to manipulate the similarity of DoS attacks without exceeding the benign
range, IVNProtect misses the DoS attacks to the CAN-bus. It causes a high
busload of the CAN-bus and unexpected vehicle behavior (e.g., disabling power
steering, blocking ADAS function). We define this evasion DoS attack against
IVNProtect as similarity-manipulation attacks.

Fortunately, we can mitigate this attack with a well-architected assignment of
the CAN IDs in practice. Specifically, we assign the low-priority CAN IDs to an
exploitable ECU that has a wireless connection and IVNProtect. Moreover,
we assign the higher priority CAN ID than the exploitable ECU to the other
important ECUs. In consequence, an attacker cannot deny the benign CAN
messages using similarity-manipulation attacks because the DoS attack consists
of the low-priority CAN IDs. However, to deploy the well-architected assignment
of CAN IDs to real-world CAN-buses, automotive manufacturers may have to
change the existing assignment of CAN IDs.

125

6.8 Conclusion

In this paper, we proposed isolable and traceable lightweight CAN-bus kernel-level
protection called IVNProtect, which has advantages such as deployability and
slight overhead compared with previous CAN-bus protections. To allow the other
ECUs to trace the root cause of isolation of compromised ECU, IVNProtect
has a reporting function to send warning messages while an attacker is compro-
mising. Moreover, we confirmed that this reporting function of IVNProtect
works even during a DoS attack. Finally, since there is not much research on
protection for attacking CAN yet, we hope that our kernel-level protection will
encourage this research field.

126

7. Conclusions and Future Research Direction
This dissertation has tackled DoS attacks on CAN from offensive and defensive
perspectives. Chap. 3 derives an unveiled evasion attack against state-of-the-art
DoS IDS. The last three chapters proposed detection, identification, and protec-
tion strategies to permanently disable DoS attacks on CAN. This chapter reviews
whether our proposed strategies can prevent DoS attacks on CAN. Additionally,
this chapter discusses the open issues toward secure in-vehicle networks.

7.1 Reviewing the Research Contributions

First, we review an unveiled evasion attack and its defensive approach. As men-
tioned in Sec. 1.4.1, to minimize the security risk of in-vehicle networks, we are
motivated to analyze DoS attacks on CAN from offensive and defensive perspec-
tives. In Chap. 3, we unveiled a new evasion attack called entropy-manipulation
attack. In Sec. 3.6, we confirmed that entropy-manipulation attack can com-
pletely evade the state-of-the-art entropy-based IDS. To address the vulnerabil-
ity of the state-of-the-art IDS, we proposed similarity-based IDS which detects
DoS attacks including entropy-manipulation attack with exploiting similarity of
CAN messages in Chap. 4. As Sec. 4.3 mentioned, we showed our proposed
similarity-based IDS can detect all DoS attacks with 100 % of precision. More-
over, similarity-based IDS reduced the time-complexity of the state-of-the-art
IDS’s detection phase. It means that similarity-based IDS successfully detects
DoS attacks including entropy-manipulation attacks with a more lightweight pro-
cedure.

Second, we review physical-layer characteristic-based sender identification. In
Chap. 5, we proposed physical-layer identification using time-to-digital converter,
called PLI-TDC, which identifies the ECU attacking the bus in order to patch
the compromised ECU. In Sec. 5.4.2, we confirmed that our PLI-TDC can iden-
tify the ECU in CAN-bus prototype and real-vehicle with 99.67 % and 97.04 % of
accuracy, respectively. Hence, we concluded that PLI-TDC satisfies the require-
ments of identification of compromised ECU which sends DoS attacks.

Third, we review CAN-bus kernel-level protection called IVNProtect, which
has advantages such as deployability and slight overhead compared with previous

127

CAN-bus protections. In Sec. 6.5, we confirmed that IVNProtect can miti-
gate the high busload caused by DoS to the benign busload. Also, we verified
whether IVNProtect can isolate a compromised ECU that conducts malicious
activity from the CAN-bus. As the result, we confirmed that IVNProtect car-
ried out the isolation of the compromised ECU based on the security error state
mechanism which we introduced. In addition, the overhead of IVNProtect is
9.049 µs, so that IVNProtect can be installed to insecure ECUs with a slight
side-effect. Therefore, we concluded that IVNProtect prevents and isolates a
DoS attacker ECU with slight overhead.

Finally, we summarize the above reviews of the research contributions. First,
we disclosed an evasion attack against the state-of-the-art DoS IDS, called entropy-
manipulation attacks. To address DoS attacks including entropy-manipulation
attacks, we derived three defensive strategies: similarity-based IDS, PLI-TDC,
and IVNProtect. From the above reviews, we concluded that the three de-
fensive strategies can provide countermeasures: detection, identification, and
protection. Thus, exploiting our three defensive strategies, automotive suppli-
ers/manufacturers can address DoS attacks by just implementing the responsive
and recovery function (e.g. reporting for Vehicle Security Operations Center
(VSOC) analysts) in the case of DoS attacks.

7.2 Open Issue and Future Research Direction

Although we achieved the disabling DoS attacks on CAN in this dissertation,
the studies are still a part of an ultimate goal. The ultimate goal of automotive
network security research is to protect and respond to the various IVNs from
all types of cyberattacks. This section elaborates the open issues to realize the
ultimate goal of automotive network security research.

7.2.1 Protection of Physical-Layer Attacks

Physical-layer data manipulation attack which directly manipulates the voltage
of physical bit from compromised ECUs has been proposed [64]. This attack can
manipulate the physical bit of CAN to cause 0 → 1 by exploiting a physical
property of CAN. This attack also requires multiple rogue ECUs to perform the

128

manipulation of physical voltage so that an attacker cannot perform the physical-
layer data manipulation attack on numerous vehicles at a large scale. Therefore,
this attack does not pose a critical threat to the critical vehicle-infrastructure.
However, it is ideal to protect the vehicles against such targeted attacks.

We proposed the similarity-based IDS and PLI-TDC as state-of-the-art intru-
sion detection systems in this dissertation. But, these systems cannot identify
the physical-layer data manipulation attack because our system exploits message-
based characteristics instead of physical bits to detect attacks.

To detect the physical-layer data manipulation attack, monitoring/detecting
the bit-wise voltage spikes is one of the practical approaches. However, the voltage
spikes of physical bits are also caused by genuine error frames of CAN. Thus, we
argue to need to research a method that distinguishes root-cause of voltage spikes
and a protection system against the physical-layer data manipulation attack as
an open issue.

7.2.2 Sophistication of IDS and PLI’s alerts for VSOC analysts

In this dissertation, we confirmed that our similarity-based IDS and PLI-TDC can
detect DoS attacks and spoofing attacks with an accuracy of 99 %. However, we
have to discuss what to do when the vehicle incorporating the IDS and PLI raise
a security alert after deploying our IDS and PLI to real-world CAN-buses. In the
case of false alerts, the vehicle incorporating the IDS and PLI may have to stop
driving on a shoulder of a road to keep the safety of the vehicle. In consequence,
false alerts cause significantly reduce the availability of the vehicle. To mitigate
the problem, VSOC can analyze the alerts and then determine whether the vehicle
needs to stop driving.

We envisage that the vehicle monitoring system with this VSOC will encounter
the same problem as SOC on the Internet. In a previous survey, it was revealed
that security analysts in a SOC confirmed the high false alerts of the IDS used,
requiring manual validation [1]. To efficiently deal with the high false alerts, it
is ideal that the security analysts can distinguish between types of false alerts.
Alahmadi et al. [1] improved security alerts of IDSs by adding five properties
(Reliable, Explainable, Analytical, Contextual, Transferable) required to foster
effective and quick validation of alerts. Hence, it is an open issue to identify

129

suitable properties for improving the security alerts of VSOC to sophisticate
IDS’s and PLI’s alerts.

7.2.3 Robustness of IDS and PLI for Concept Drift Caused by Various
Vehicles

In this section, we discuss that robustness of IDS and PLI for concept drift caused
by various vehicles. CAN and IVN traffic depend on the vehicle model, gener-
ations of the vehicle model and some additional options (e.g., ADAS function).
In other words, CAN traffic has the difference even in the same vehicle model.
Our similarity-based IDS can adapt to the difference in CAN traffic because it
can control a benign range defined by σs to permit the difference of CAN traf-
fic. On the other hand, PLI-TDC cannot deal with the difference in CAN traffic
because the physical-layer characteristics (e.g., delay-time and voltage) depend
on individual vehicles. To address the difference in CAN traffic, PLI-TDC must
update its machine learning model to adapt to the difference in physical-layer
characteristics. As with the issue of EMI described in Sec. 5.5.6, the updating
scheme of the machine learning model can be an attack-surface. It means that
an attacker can poison the training data by malicious messages. To deal with
the attacker, PLI-TDC requires legitimate training data that do not contain ma-
licious messages. Therefore, it is also a future research direction to be robust
in the machine learning model of PLI-TDC against the difference of individual
vehicles (same vehicle model).

7.2.4 Improving Accuracy of Physical-Layer Identification

PLI-TDC achieved a mean accuracy of 97.04 - 99.67 %. Also, PLI-TDC detected
the messages sent by incorrect sender ECUs with 100 % in the CAN bus proto-
type and real-vehicle. It means that PLI-TDC can detect the messages sent by
an incorrect sender ECU with 100 % and however identify which ECUs are the
incorrect sender ECU with a mean accuracy 97.04 - 99.67 %. We assume that
PLI-TDC is used to identify a compromised ECU which sends the DoS attacks
for responding and recovering from the DoS attacks. Specifically, if PLI-TDC
can accurately identify the compromised ECU, VSOC can immediately patch
and replace ECU for responding and recovering. To realize the procedure for

130

responding and recovering, it is ideal to identify the ECUs with a mean accuracy
of 100 %. Therefore, it is a future research topic to implement a more accurate
PLI than PLI-TDC. One of the ways to implement the accurate PLI is to exploit
both voltage-domain and time-domain characteristics. However, it increases the
complexity of the machine learning model and requires computational resources.
Thus, it is important to study the trade-off between the accuracy of PLI and
requiring computational resources which satisfy the constraint of vehicle environ-
ments.

7.2.5 Security Analysis and Mechanism for Next-Generation In-Vehicle
Networks

Currently, to replace CAN with next-generation in-vehicle networks, various new
in-vehicle network protocols have been proposed. Notably, the automotive in-
dustry has an interest in Automotive Ethernet [2] in terms of high bandwidth,
high throughput, and low-cost characteristics. Automotive Ethernet (100Base-
T1) is a next-generation in-vehicle network based on BroadR-Reach4 technology
which Broadcom developed. Deploying Automotive Ethernet to real-vehicles, the
in-vehicle network enables ECUs to provide service-oriented communication. As
one of the service-oriented communication, Scalable service-Oriented MiddlewarE
Over IP (SOME/IP) [5] was designed to fit small devices like cameras, ECUs,
and up to head units or telematics devices. ECUs can use SOME/IP for a new
application installed to an ECU by software updating to find some functions in
the vehicle. However, since the SOME/IP specification does not consider any
security mechanisms, man-in-the-middle attacks have been demonstrated [103].

On the other hand, CAN-XL [30] has been designed to provide 10Mbps as
the next step in CAN and CAN-FD evolution. CAN-XL extends the data field
length to 2048 bytes from 8 bytes of CAN’s data field length. It means that
the authentication mechanisms can be easily applied to CAN-XL because there
is no limitation to implementing the authentication mechanisms, different from
CAN’s data field. However, since CAN-XL also inherits the CAN’s arbitration
scheme, it also requires a DoS attack defense mechanism against CAN-XL. Thus,

4BroadR-Reach is a Boradcom point-to-point Ethernet physical-layer (PHY) technology,
adopted by the One-Pair Ether-Net Alliance BroadR-Reach PHY (OABR PHY).

131

IVNProtect derived in this dissertation can still be effective in mitigating DoS
attacks in CAN-XL.

For securing the next-generation in-vehicle networks, we also have to consider
the defensive mechanisms as with CAN. Fortunately, SOME/IP is implemented
on the TCP/IP stacks so that we can adapt the network security techniques that
do not depend on a specific application layer. Moreover, the automotive security
techniques to analyze the characteristics of automotive packets/messages and to
meet real-time demands have been studied such as in this dissertation. Therefore,
we can apply these techniques to be secure and resilient Automotive Ethernet-
based in-vehicle networks. To summarize, in order to realize the protection of the
next-generation in-vehicle networks, it is necessary to analyze the networks from
both theory and implementation perspectives and to apply the previous network
and automotive security techniques.

132

Acknowledgements
I would like to express my sincere gratitude to all related to my journey to get
Ph.D. degree.

First, I thank my advisor, Professor Kazutoshi Fujikawa. He provided ap-
propriate research guidance and research support from various aspects such as
gaining experience in international presentations and extensive knowledge. I was
always struck and helped by his generosity, and I am sure it made the atmo-
sphere of our laboratory so good. I could never have achieved all my research
goals without his support.

I am grateful to Associate Professor Ismail Arai. I was always inspired by his
passion for doing research and his leadership in some projects. When our paper
was rejected by an international conference and journal, he encouraged me. And,
I was able to challenge again an international conference and journal. His great
insights also made a big contribution to my research. So, no doubt he was one of
the people needed to achieve my research goals.

I appreciate Assistant Professor Masatoshi Kakiuchi, for his various support
such as guidance of system administration related to Mandara network and
servers. I thank Assistant Professor Arata Endou, for his many comments to
improve my research and this dissertation during the laboratory meetings.

I am grateful to Professor Hiroyuki Inoue of Kyoto Sangyo University. He
was my advisor during my undergraduate, and I could learn the excitement of
cybersecurity research such as automotive security. When I submitted the first
and second journals, he helped me by doing meetings and commenting on my
journal. He was also one of the people needed to achieve my research goals.

I especially thank all inet-lab members and my friends for their camaraderie.
In particular, I am thankful to Dr. Araya Kibrom Desta and Mr. Tomoya
Kitagawa. They were labmates in the same research field of automotive security.
They also provided many discussions and comments to me on my research. I
thank Ms. Ayako Nakano and Ms. Rie Tsujimoto, who are secretaries of the
inet-lab, for their warmful support.

Finally, I would like to express my sincere gratitude to my family for under-
standing my life and providing a great deal of support.

This research in this dissertation was partially supported by Japan Society

133

for the Promotion of Science (JSPS) Research Fellowships for Young Scientists
(DC2) Grant Number: 21J10516.

134

https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21J10516/

References
[1] Bushra A Alahmadi, Louise Axon, and Ivan Martinovic. 99% False Pos-

itives: A Qualitative Study of SOC Analysts ’Perspectives on Security
Alarms. In Proceedings of the 31st USENIX Security Symposium (USENIX
Security 22), pages 10–12, 2022.

[2] OPEN Alliance. Automotive Ethernet Specifications. https://www.
opensig.org/about/specifications/, 12 2021. (Accessed on 7/8/2022).

[3] ams. AS6500 Time-to-Digital Converter. https://ams.com/ja/as6500,
2020. (Accessed on 10/25/2020).

[4] Yasuo Arai and Masahiro Ikeno. A Time Digitizer CMOS Gate-Array with
a 250 ps Time Resolution. IEEE Journal of Solid-State Circuits, 31(2):212–
220, 1996.

[5] AUTOSAR. SOME/IP Protocol Specification. https://www.autosar.
org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_
PRS_SOMEIPProtocol.pdf, 11 2016. (Accessed on 7/8/2022).

[6] Pranshu Bajpai, Richard Enbody, and Betty HC Cheng. Ransomware Tar-
geting Automobiles. In Proceedings of the Second ACM Workshop on Au-
tomotive and Aerial Vehicle Security (AutoSec), pages 23–29, 2020.

[7] Rohit Bhatia, Vireshwar Kumar, Khaled Serag, Z Berkay Celik, Mathias
Payer, and Dongyan Xu. Evading Voltage-Based Intrusion Detection on
Automotive CAN. In Proceedings of the 28th Network and Distributed Sys-
tem Security Symposium (NDSS), 2021.

[8] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Ho-
vav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roes-
ner, Tadayoshi Kohno, et al. Comprehensive Experimental Analyses of
Automotive Attack Surfaces. In Proceedings of the 20th USENIX Security
Symposium (USENIX Security 11), volume 4, pages 447–462. San Fran-
cisco, 2011.

135

https://www.opensig.org/about/specifications/
https://www.opensig.org/about/specifications/
https://ams.com/ja/as6500
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf

[9] Kyong-Tak Cho and Kang G Shin. Fingerprinting Electronic Control Units
for Vehicle Intrusion Detection. In Proceedings of the 25th USENIX Security
Symposium (USENIX Security 16), pages 911–927, 2016.

[10] Kyong-Tak Cho and Kang G Shin. Viden: Attacker Identification on In-
Vehicle Networks. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 1109–1123. ACM,
2017.

[11] Wonsuk Choi, Hyo Jin Jo, Samuel Woo, Ji Young Chun, Jooyoung Park,
and Dong Hoon Lee. Identifying ECUs Using Inimitable Characteristics
of Signals in Controller Area Networks. IEEE Transactions on Vehicular
Technology, 67(6):4757–4770, 2018.

[12] Wonsuk Choi, Kyungho Joo, Hyo Jin Jo, Moon Chan Park, and Dong Hoon
Lee. VoltageIDS: Low-Level Communication Characteristics for Automo-
tive Intrusion Detection System. IEEE Transactions on Information Foren-
sics and Security, 13(8):2114–2129, 2018.

[13] JA Cook and JS Freudenberg. Controller Area Network (CAN). EECS,
461:1–5, 2007.

[14] The MITRE Corporation. CVE-2020-5551. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2020-5551, 01 2020. (Accessed on
04/26/2020).

[15] Craig Smith. The Car Hacker’s Handbook A Guide for the
Penetration Tester. https://docs.alexomar.com/biblioteca/
thecarhackershandbook.pdf. (Accessed: 2019-12-17).

[16] Robert I Davis, Alan Burns, Reinder J Bril, and Johan J Lukkien. Con-
troller Area Network (CAN) Schedulability Analysis: Refuted, Revisited
and Revised. Real-Time Systems, 35(3):239–272, 2007.

[17] Araya Kibrom Desta, Shuji Ohira, Ismail Arai, and Kazutoshi Fujikawa.
ID Sequence Analysis for Intrusion Detection in the CAN Bus Using Long
Short Term Memory Networks. In 2020 IEEE International Conference

136

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5551
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5551
https://docs.alexomar.com/biblioteca/thecarhackershandbook.pdf
https://docs.alexomar.com/biblioteca/thecarhackershandbook.pdf

on Pervasive Computing and Communications Workshops (PerCom Work-
shops), pages 1–6. IEEE, 2020.

[18] Araya Kibrom Desta, Shuji Ohira, Ismail Arai, and Kazutoshi Fujikawa.
Long Short-Term Memory Networks for In-Vehicle Networks Intrusion De-
tection Using Reverse Engineered Automotive Packets. Journal of Infor-
mation Processing, 28:611–622, 2020.

[19] Araya Kibrom Desta, Shuji Ohira, Ismail Arai, and Kazutoshi Fujikawa.
MLIDS: Handling Raw High-Dimensional CAN Bus Data Using Long
Short-Term Memory Networks for Intrusion Detection in In-Vehicle Net-
works. In 2020 30th International Telecommunication Networks and Appli-
cations Conference (ITNAC), pages 1–7. IEEE, 2020.

[20] Tamer ElBatt, Siddhartha K Goel, Gavin Holland, Hariharan Krishnan,
and Jayendra Parikh. Cooperative collision warning using dedicated short
range wireless communications. In Proceedings of the 3rd international
workshop on Vehicular ad hoc networks, pages 1–9, 2006.

[21] Bernd Elend and Tony Adamson. Cyber Security Enhancing CAN
Transceivers. In Proceedings of the 16th International CAN Conference,
2017.

[22] Alessandro Erba, Riccardo Taormina, Stefano Galelli, Marcello Pogliani,
Michele Carminati, Stefano Zanero, and Nils Ole Tippenhauer. Constrained
concealment attacks against reconstruction-based anomaly detectors in in-
dustrial control systems. In Annual Computer Security Applications Con-
ference, pages 480–495, 2020.

[23] Mahsa Foruhandeh, Yanmao Man, Ryan Gerdes, Ming Li, and Thidapat
Chantem. SIMPLE: Single-Frame Based Physical Layer Identification for
Intrusion Detection and Prevention on In-Vehicle Networks. In Proceedings
of the 35th Annual Computer Security Applications Conference (ACSAC),
pages 229–244, 2019.

[24] Linux Foundation. Automotive Grade Linux. https://www.
automotivelinux.org/, 7 2019. (Accessed on 07/08/2019).

137

https://www.automotivelinux.org/
https://www.automotivelinux.org/

[25] Ryan M Gerdes, Thomas E Daniels, Mani Mina, and Steve Russell. De-
vice Identification via Analog Signal Fingerprinting: A Matched Filter Ap-
proach. In Proceedings of the 13th Network and Distributed System Security
Symposium (NDSS). Citeseer, 2006.

[26] Ryan M Gerdes, Mani Mina, Steve F Russell, and Thomas E Daniels.
Physical-Layer Identification of Wired Ethernet Devices. IEEE Transac-
tions on Information Forensics and Security, 7(4):1339–1353, 2012.

[27] Ryan Michael Kepke Gerdes. Physical Layer Identification: Methodology,
Security, and Origin of Variation. PhD thesis, Iowa State University, 2011.

[28] Robert Bosch GmbH. CAN Specification Version 2.0. http://esd.cs.
ucr.edu/webres/can20.pdf, 1991. (Accessed on 07/08/2019).

[29] Robert Bosch GmbH. CAN with Flexible Data-Rate Specification
Version 1.0. https://can-newsletter.org/assets/files/ttmedia/
raw/e5740b7b5781b8960f55efcc2b93edf8.pdf, 7 2019. (Accessed on
07/08/2019).

[30] Robert Bosch GmbH. CAN XL – THE NEXT STEP IN CAN EVOLU-
TION. https://www.bosch-semiconductors.com/media/ip_modules/
pdf_2/can_xl_1/canxl_intro_20210225.pdf, 2 2021. (Accessed on
11/27/2021).

[31] Bogdan Groza and Pal-Stefan Murvay. Efficient Intrusion Detection with
Bloom Filtering in Controller Area Networks. IEEE Transactions on In-
formation Forensics and Security, 14(4):1037–1051, 2018.

[32] Bogdan Groza, Pal-Stefan Murvay, Lucian Popa, and Camil Jichici. CAN-
SQUARE-Decimeter Level Localization of Electronic Control Units on
CAN Buses. In European Symposium on Research in Computer Security
(ESORICS), 2021.

[33] Bogdan Groza, Stefan Murvay, Anthony Van Herrewege, and Ingrid Ver-
bauwhede. LiBrA-CAN: A Lightweight Broadcast Authentication Protocol
for Controller Area Networks. ACM Transactions on Embedded Computing
Systems (TECS), 16(3):90, 2017.

138

http://esd.cs.ucr.edu/webres/can20.pdf
http://esd.cs.ucr.edu/webres/can20.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/can_xl_1/canxl_intro_20210225.pdf
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/can_xl_1/canxl_intro_20210225.pdf

[34] Bogdan Groza, Lucian Popa, Pal-Stefan Murvay, Yuval Elovici, and Asaf
Shabtai. {CANARY}-A Reactive Defense Mechanism for Controller Area
Networks based on Active RelaYs. In Proceedings of the 30th USENIX
Security Symposium (USENIX Security 21), pages 1–18, 2021.

[35] Joffrey Guilbon. Attacking the ARM’s TrustZone. https://blog.
quarkslab.com/attacking-the-arms-trustzone.html, 2018. (Accessed
on 02/17/2022).

[36] Markus Hanselmann, Thilo Strauss, Katharina Dormann, and Holger Ul-
mer. CANet: An Unsupervised Intrusion Detection System for High Di-
mensional CAN Bus Data. IEEE Access, 8:58194–58205, 2020.

[37] Anthony Van Herrewege, Dave Singelee, and Ingrid Verbauwhede.
CANAuth-A Simple, Backward Compatible Broadcast Authentication Pro-
tocol for CAN Bus. In ECRYPT Workshop on Lightweight Cryptography,
volume 2011, pages 1–7, 2011.

[38] Abdulmalik Humayed, Fengjun Li, Jingqiang Lin, and Bo Luo. CANSentry:
Securing CAN-Based Cyber-Physical Systems against Denial and Spoofing
Attacks. In European Symposium on Research in Computer Security (ES-
ORICS), pages 153–173. Springer, 2020.

[39] Abdulmalik Humayed and Bo Luo. Using ID-Hopping to Defend against
Targeted DoS on CAN. In Proceedings of the 1st International Workshop on
Safe Control of Connected and Autonomous Vehicles, pages 19–26. ACM,
2017.

[40] Muhammad Sabir Idrees, Hendrik Schweppe, Yves Roudier, Marko Wolf,
Dirk Scheuermann, and Olaf Henniger. Secure Automotive On-Board Pro-
tocols: A Case of Over-The-Air Firmware Updates. In International Work-
shop on Communication Technologies for Vehicles, pages 224–238. Springer,
2011.

[41] Riadul Islam and Rafi Ud Daula Refat. Improving CAN Bus Security by
Assigning Dynamic Arbitration IDs. Journal of Transportation Security,
13(1):19–31, 2020.

139

https://blog.quarkslab.com/attacking-the-arms-trustzone.html
https://blog.quarkslab.com/attacking-the-arms-trustzone.html

[42] Shalabh Jain and Jorge Guajardo. Physical Layer Group Key Agreement
for Automotive Controller Area Networks. In International Conference
on Cryptographic Hardware and Embedded Systems (CHES), pages 85–105.
Springer, 2016.

[43] Min-Joo Kang and Je-Won Kang. Intrusion Detection System Using Deep
Neural Network for In-Vehicle Network Security. PloS one, 11(6):e0155781,
2016.

[44] Marcel Kneib and Christopher Huth. Scission: Signal Characteristic-Based
Sender Identification and Intrusion Detection in Automotive Networks. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), pages 787–800. ACM, 2018.

[45] Marcel Kneib, Oleg Schell, and Christopher Huth. On the Robustness of
Signal Characteristic-Based Sender Identification. 2019.

[46] Marcel Kneib, Oleg Schell, and Christopher Huth. EASI: Edge-Based
Sender Identification on Resource-Constrained Platforms for Automotive
Networks. In Proceedings of the 27th Network and Distributed System Se-
curity Symposium (NDSS), pages 1–16, 2020.

[47] Igor Kononenko. Estimating Attributes: Analysis and Extensions of
RELIEF. In European conference on machine learning, pages 171–182.
Springer, 1994.

[48] Vipin Kumar Kukkala, Sooryaa Vignesh Thiruloga, and Sudeep Pasricha.
INDRA: Intrusion Detection Using Recurrent Autoencoders in Automotive
Embedded Systems. arXiv preprint arXiv:2007.08795, 2020.

[49] Sekar Kulandaivel. Revisiting Remote Attack Kill-Chains on Modern In-
Vehicle Networks. PhD thesis, Carnegie Mellon University, 2021.

[50] Sekar Kulandaivel, Tushar Goyal, Arnav Kumar Agrawal, and Vyas Sekar.
CANvas: Fast and Inexpensive Automotive Network Mapping. In Pro-
ceedings of the 28th USENIX Security Symposium (USENIX Security 19),
pages 389–405, 2019.

140

[51] Sekar Kulandaivel, Shalabh Jain, Jorge Guajardo, and Vyas Sekar. CAN-
non: Reliable and Stealthy Remote Shutdown Attacks via Unaltered Auto-
motive Microcontrollers. In 2021 IEEE Symposium on Security and Privacy
(SP), pages 195–210. IEEE, 2021.

[52] Ryo Kurachi, Yutaka Matsubara, Hiroaki Takada, Naoki Adachi, Yukihiro
Miyashita, and Satoshi Horihata. CaCAN-Centralized Authentication Sys-
tem in CAN (Controller Area Network). In 14th Int. Conf. on Embedded
Security in Cars (ESCAR 2014), 2014.

[53] Ryo Kurachi, Hiroaki Takada, Naoki Adachi, Hiroshi Ueda, and Yukihiro
Miyashita. DDCAN: Delay-Time Deliverable CAN Network. In 2019 IEEE
19th International Conference on Software Quality, Reliability and Security
Companion (QRS-C), pages 36–41. IEEE, 2019.

[54] Takuya Kuwahara, Yukino Baba, Hisashi Kashima, Takeshi Kishikawa, Ju-
nichi Tsurumi, Tomoyuki Haga, Yoshihiro Ujiie, Takamitsu Sasaki, and
Hideki Matsushima. Supervised and Unsupervised Intrusion Detection
Based on CAN Message Frequencies for In-Vehicle Network. Journal of
Information Processing, 26:306–313, 2018.

[55] Hyunsung Lee, Seong Hoon Jeong, and Huy Kang Kim. OTIDS: A Novel
Intrusion Detection System for In-Vehicle Network by Using Remote Frame.
In 2017 15th Annual Conference on Privacy, Security and Trust (PST),
pages 57–5709. IEEE, 2017.

[56] Teri Lenard and Roland Bolboaca. A Statefull Firewall and Intrusion Detec-
tion System Enforced with Secure Logging for Controller Area Network. In
European Interdisciplinary Cybersecurity Conference (EICC), pages 39–45,
2021.

[57] Jiajia Liu, Shubin Zhang, Wen Sun, and Yongpeng Shi. In-Vehicle Network
Attacks and Countermeasures: Challenges and Future Directions. IEEE
Network, 31(5):50–58, 2017.

[58] Aravind Machiry, Eric Gustafson, Chad Spensky, Christopher Salls, Nick
Stephens, Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe, Christopher

141

Kruegel, and Giovanni Vigna. BOOMERANG: Exploiting the Semantic
Gap in Trusted Execution Environments. In NDSS, 2017.

[59] Mirco Marchetti and Dario Stabili. Anomaly Detection of CAN Bus Mes-
sages through Analysis of ID Sequences. In 2017 IEEE Intelligent Vehicles
Symposium (IV), pages 1577–1583. IEEE, 2017.

[60] Mirco Marchetti, Dario Stabili, Alessandro Guido, and Michele Cola-
janni. Evaluation of Anomaly Detection for In-Vehicle Networks through
Information-Theoretic Algorithms. In 2016 IEEE 2nd International Forum
on Research and Technologies for Society and Industry Leveraging a better
tomorrow (RTSI), pages 1–6. IEEE, 2016.

[61] Michael Müter, André Groll, and Felix C. Freiling. A Structured Approach
to Anomaly Detection for In-Vehicle Networks. In 2010 Sixth International
Conference on Information Assurance and Security, pages 92–98, 2010.

[62] Charlie Miller and Chris Valasek. Remote Exploitation of An Unaltered
Passenger Vehicle. Black Hat USA, 2015:1–91, 2015.

[63] Tanmaya Mishra, Thidapat Chantem, and Ryan Gerdes. TEECheck: Se-
curing Intra-Vehicular Communication Using Trusted Execution. In Pro-
ceedings of the 28th International Conference on Real-Time Networks and
Systems (RTNS), pages 128–138, 2020.

[64] Abdullah Zubair Mohammed, Yanmao Man, Ryan Gerdes, Ming Li, and
Z Berkay Celik. Physical Layer Data Manipulation Attacks on the CAN
Bus. In Workshop on Automotive and Autonomous Vehicle Security (Au-
toSec) 2022, pages 1–5, 2022.

[65] Philipp Mundhenk, Andrew Paverd, Artur Mrowca, Sebastian Steinhorst,
Martin Lukasiewycz, Suhaib A Fahmy, and Samarjit Chakraborty. Se-
curity in Automotive Networks: Lightweight Authentication and Autho-
rization. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 22(2):25, 2017.

142

[66] Philipp Mundhenk, Sebastian Steinhorst, Martin Lukasiewycz, Suhaib A
Fahmy, and Samarjit Chakraborty. Lightweight Authentication for Secure
Automotive Networks. In 2015 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pages 285–288. IEEE, 2015.

[67] Pal-Stefan Murvay and Bogdan Groza. Source Identification Using Sig-
nal Characteristics in Controller Area Networks. IEEE Signal Processing
Letters, 21(4):395–399, 2014.

[68] Pal-Stefan Murvay and Bogdan Groza. TIDAL-CAN: Differential Timing
Based Intrusion Detection and Localization for Controller Area Network.
IEEE Access, 8:68895–68912, 2020.

[69] Michael Müter and Naim Asaj. Entropy-Based Anomaly Detection for
In-Vehicle Networks. In 2011 IEEE Intelligent Vehicles Symposium (IV),
pages 1110–1115. IEEE, 2011.

[70] Minki Nam, Seungyoung Park, and Duk Soo Kim. Intrusion Detection
Method Using Bi-Directional GPT for In-Vehicle Controller Area Networks.
IEEE Access, 9:124931–124944, 2021.

[71] Sen Nie, Ling Liu, and Yuefeng Du. Free-Fall: Hacking Tesla from Wireless
to CAN Bus. Black Hat USA, 2017:1–16, 2017.

[72] Stefan Nürnberger and Christian Rossow. –vatiCAN–Vetted, Authenticated
CAN Bus. In International Conference on Cryptographic Hardware and
Embedded Systems (CHES), pages 106–124. Springer, 2016.

[73] Shuji Ohira. Similarity-based IDS. https://github.com/shuji-oh/
similarity_CAN_IDS, 7 2019. (Accessed on 07/08/2019).

[74] Shuji Ohira. PLI-TDC. https://github.com/shuji-oh/PLI_TDC_for_
CAN, 2020. (Accessed: 2020-10-25).

[75] Shuji Ohira. IVNProtect. https://github.com/shuji-oh/ivnprotect,
2022. (Accessed: 2022-02-21).

143

https://github.com/shuji-oh/similarity_CAN_IDS
https://github.com/shuji-oh/similarity_CAN_IDS
https://github.com/shuji-oh/PLI_TDC_for_CAN
https://github.com/shuji-oh/PLI_TDC_for_CAN
https://github.com/shuji-oh/ivnprotect

[76] Shuji Ohira, Araya Kibrom Desta, Ismail Arai, Hiroyuki Inoue, and Kazu-
toshi Fujikawa. Normal and Malicious Sliding Windows Similarity Analysis
Method for Fast and Accurate IDS against DoS Attacks on In-Vehicle Net-
works. IEEE Access, 8:42422–42435, 2020.

[77] Shuji Ohira, Hiroyuki Inoue, Ismail Arai, and Kazutoshi Fujikawa. DoS
Attack Mitigation Method on CAN Bus by Whitelist and Delay Addition
in In-Vehicle Infotainment System. Computer Security Symposium 2018,
2018(2):1128–1133.

[78] Shuji Ohira, Araya Kibrom Desta, Ismail Arai, and Kazutoshi Fujikawa.
PLI-TDC: Super Fine Delay-Time Based Physical-Layer Identification with
Time-to-Digital Converter for In-Vehicle Networks. In Proceedings of the
2021 ACM Asia Conference on Computer and Communications Security
(ASIACCS), pages 1–11. ACM, 2021.

[79] Shuji Ohira, Araya Kibrom Desta, Tomoya Kitagawa, Ismail Arai, and
Kazutoshi Fujikawa. Divider: Delay-Time Based Sender Identification in
Automotive Networks. In IEEE 44th Annual Computer Software and Ap-
plications Conference (COMPSAC), pages 1490–1497. IEEE, 2020.

[80] International Organization and Standardization (ISO). ISO 11898:
Road Vehicles–Interchange of Digital Information–Controller Area Net-
work (CAN) for High-Speed Communication. https://www.iso.org/
standard/20380.html, 1993.

[81] Mert D. Pesé, Jay W. Schauer, Junhui Li, and Kang G. Shin. S2-CAN:
Sufficiently Secure Controller Area Network. In Proceedings of the 37th An-
nual Computer Security Applications Conference (ACSAC), ACSAC, page
425–438, New York, NY, USA, 2021. Association for Computing Machinery.

[82] Andreea-Ina Radu and Flavio D Garcia. LeiA: A Lightweight Authentica-
tion Protocol for CAN. In European Symposium on Research in Computer
Security (ESORICS), pages 283–300. Springer, 2016.

[83] Marcel Rumez, Jürgen Dürrwang, Tim Brecht, Timo Steinshorn, Peter

144

https://www.iso.org/standard/20380.html
https://www.iso.org/standard/20380.html

Neugebauer, Reiner Kriesten, and Eric Sax. CAN Radar: Sensing Physical
Devices in CAN Networks based on Time Domain Reflectometry. 2019.

[84] Oleg Schell and Marcel Kneib. VALID: Voltage-Based Lightweight Intru-
sion Detection for the Controller Area Network. In 2020 IEEE 19th In-
ternational Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), pages 225–232. IEEE, 2020.

[85] James Scobie. A Starter’s Guide to Arm Processing Power in Automotive
- Embedded blog - System - Arm Community. https://community.
arm.com/developer/ip-products/system/b/embedded-blog/posts/
a-starters-guide-to-arm-processing-power-in-automotive, 07
2018. (Accessed on 05/31/2020).

[86] Eunbi Seo, Hyun Min Song, and Huy Kang Kim. GIDS: GAN Based In-
trusion Detection System for In-Vehicle Network. In 2018 16th Annual
Conference on Privacy, Security and Trust (PST), pages 1–6. IEEE, 2018.

[87] P Sivakumar, RS Sandhya Devi, A Neeraja Lakshmi, B VinothKumar,
and B Vinod. Automotive grade linux software architecture for automo-
tive infotainment system. In 2020 International Conference on Inventive
Computation Technologies (ICICT), pages 391–395. IEEE, 2020.

[88] Hyun Min Song, Ha Rang Kim, and Huy Kang Kim. Intrusion Detec-
tion System Based on the Analysis of Time Intervals of CAN Messages
for In-Vehicle Network. In 2016 international conference on information
networking (ICOIN), pages 63–68. IEEE, 2016.

[89] Jian Song, Qi An, and Shubin Liu. A High-Resolution Time-to-Digital
Converter Implemented in Field-Programmable-Gate-Arrays. IEEE Trans-
actions on Nuclear Science, 53(1):236–241, 2006.

[90] Masaru Takada, Yuki Osada, and Masakatu Morii. Counter Attack against
the Bus-off Attack on CAN. In 2019 14th Asia Joint Conference on Infor-
mation Security (AsiaJCIS), pages 96–102. IEEE, 2019.

145

https://community.arm.com/developer/ip-products/system/b/embedded-blog/posts/a-starters-guide-to-arm-processing-power-in-automotive
https://community.arm.com/developer/ip-products/system/b/embedded-blog/posts/a-starters-guide-to-arm-processing-power-in-automotive
https://community.arm.com/developer/ip-products/system/b/embedded-blog/posts/a-starters-guide-to-arm-processing-power-in-automotive

[91] Linus Torvalds. mcp251x.c - Kernel source tree for Raspberry Pi-
provided kernel builds. https://github.com/raspberrypi/linux/blob/
4a1f59200d36993f6b32742c03c154ae275bd89c/drivers/net/can/spi/
mcp251x.c, 2022. (Accessed: 2022-02-21).

[92] Jo Van Bulck, Jan Tobias Mühlberg, and Frank Piessens. VulCAN: Ef-
ficient Component Authentication and Software Isolation for Automotive
Control Networks. In Proceedings of the 33rd Annual Computer Security
Applications Conference (ACSAC), pages 225–237. ACM, 2017.

[93] Cliff Wang, Ryan M Gerdes, Yong Guan, and Sneha Kumar Kasera. Digital
Fingerprinting. Springer, 2016.

[94] Qian Wang, Yiming Qian, Zhaojun Lu, Yasser Shoukry, and Gang Qu. A
Delay Based Plug-in-Monitor for Intrusion Detection in Controller Area
Network. In 2018 Asian Hardware Oriented Security and Trust Symposium
(AsianHOST), pages 86–91. IEEE, 2018.

[95] Zhuo Wei, Yanjiang Yang, and Tieyan Li. Authenticated CAN Commu-
nications Using Standardized Cryptographic Techniques. In International
Conference on Information Security Practice and Experience, pages 330–
343. Springer, 2016.

[96] Samuel Woo, Daesung Moon, Taek-Young Youn, Yousik Lee, and Yongeun
Kim. CAN ID Shuffling Technique (CIST): Moving Target Defense Strategy
for Protecting In-Vehicle CAN. IEEE Access, 7:15521–15536, 2019.

[97] Jinyuan Wu and Zonghan Shi. The 10-ps Wave Union TDC: Improving
FPGA TDC Resolution beyond Its Cell Delay. In 2008 IEEE Nuclear
Science Symposium Conference Record, pages 3440–3446. IEEE, 2008.

[98] Wufei Wu, Yizhi Huang, Ryo Kurachi, Gang Zeng, Guoqi Xie, Renfa Li, and
Keqin Li. Sliding Window Optimized Information Entropy Analysis Method
for Intrusion Detection on In-Vehicle Networks. IEEE Access, 6:45233–
45245, 2018.

146

https://github.com/raspberrypi/linux/blob/4a1f59200d36993f6b32742c03c154ae275bd89c/drivers/net/can/spi/mcp251x.c
https://github.com/raspberrypi/linux/blob/4a1f59200d36993f6b32742c03c154ae275bd89c/drivers/net/can/spi/mcp251x.c
https://github.com/raspberrypi/linux/blob/4a1f59200d36993f6b32742c03c154ae275bd89c/drivers/net/can/spi/mcp251x.c

[99] Wufei Wu, Ryo Kurachi, Gang Zeng, Yutaka Matsubara, Hiroaki Takada,
Renfa Li, and Keqin Li. IDH-CAN: A Hardware-Based ID Hopping CAN
Mechanism With Enhanced Security for Automotive Real-Time Applica-
tions. IEEE Access, 6:54607–54623, 2018.

[100] Wufei Wu, Renfa Li, Guoqi Xie, Jiyao An, Yang Bai, Jia Zhou, and Ke-
qin Li. A Survey of Intrusion Detection for In-Vehicle Networks. IEEE
Transactions on Intelligent Transportation Systems, 2019.

[101] Yang Xiao, Shanghao Shi, Ning Zhang, Wenjing Lou, and Y Thomas Hou.
Session Key Distribution Made Practical for CAN and CAN-FD Message
Authentication. In Proceedings of the 36th Annual Computer Security Ap-
plications Conference (ACSAC), pages 681–693, 2020.

[102] Mahmut Yazici, Shadi Basurra, and Mohamed Gaber. Edge Machine Learn-
ing: Enabling Smart Internet of Things Applications. Big Data and Cog-
nitive Computing, 2(3):1–17, 2018.

[103] Daniel Zelle, Timm Lauser, Dustin Kern, and Christoph Krauß. Analyzing
and Securing SOME/IP Automotive Services with Formal and Practical
Methods. In The 16th International Conference on Availability, Reliability
and Security, pages 1–20, 2021.

[104] Jia Zhou, Prachi Joshi, Haibo Zeng, and Renfa Li. BTMonitor: Bit-Time-
Based Intrusion Detection and Attacker Identification in Controller Area
Network. ACM Transactions on Embedded Computing Systems (TECS),
18(6):1–23, 2019.

147

Achievements
Papers marked with (∗) are closely related papers of this doctoral dissertation.

Refereed Journals
∗Shuji Ohira, Araya Kibrom Desta, Ismail Arai, Hiroyuki Inoue, Kazu-
toshi Fujikawa, “Normal and Malicious Sliding Windows Similarity Analy-
sis Method for Fast and Accurate IDS against DoS Attacks on In-Vehicle
Networks,” IEEE Access, Vol.8, pp.42422-42435, Feb. 2020.

大平修慈, 井上博之, 新井イスマイル, 藤川和利, “車載LANへ侵入するマル
ウェアの証拠保全を行うカーネル上のフォレンジック機構,” 情報処理学会
論文誌, Vol.60, No.3, pp.791-802, Mar. 2019.

Araya Kibrom Desta, Shuji Ohira, Ismail Arai, Kazutoshi Fujikawa, “Rec-
CNN: In-Vehicle Networks Intrusion Detection Using Convolutional Neural
Networks Trained on Recurrence Plots,” Elsevier Vehicular Communica-
tions, Vol.35, pp.1-13, June. 2022.

Araya Kibrom Desta, Shuji Ohira, Ismail Arai, Kazutoshi Fujikawa, “Long
Short-Term Memory Networks for Intrusion Detection Using Reverse En-
gineered Automotive Packets,” Journal of Information Processing, Vol.28,
pp.611-622, Sep. 2020.

International Conference
∗Shuji Ohira, Araya Kibrom Desta, Ismail Arai, Kazutoshi Fujikawa,
“IVNProtect: Isolable and Traceable Lightweight CAN-Bus Kernel-Level
Protection for Securing In-Vehicle Communication,” The 9th International
Conference on Information Systems Security and Privacy (ICISSP), pp.17-
28, Feb. 2023.

∗Shuji Ohira, Araya Kibrom Desta, Ismail Arai, Kazutoshi Fujikawa, “PLI-
TDC: Super Fine Delay-Time Based Physical-Layer Identification with Time-

148

to-Digital Converter for In-Vehicle Networks,” The 16th ACM ASIA Con-
ference on Computer and Communications Security (ASIACCS), pp.176-
186, June. 2021.

∗Shuji Ohira, Araya Kibrom Desta, Tomoya Kitagawa, Ismail Arai, Kazu-
toshi Fujikawa, “Divider: Delay-Time Based Sender Identification in Auto-
motive Networks,” IEEE 44th Annual Computer Software and Applications
Conference (COMPSAC), pp.1490-1497, July. 2020.

Araya Kibrom Desta, Shuji Ohira, Ismail Arai, Kazutoshi Fujikawa, “U-
CAN: A Convolutional Neural Network Based Intrusion Detection for Con-
troller Area Networks,” IEEE 46th Annual Computer Software and Appli-
cations Conference (COMPSAC), pp.1481-1488, July. 2022.

Araya Kibrom Desta, Shuji Ohira, Ismail Arai, Kazutoshi Fujikawa, “MLIDS:
Handling Raw High-Dimensional CAN Bus Data using Long Short-Term
Memory Networks for Intrusion Detection in In-Vehicle Networks,” Interna-
tional Telecommunication Networks and Applications Conference (ITNAC),
IEEE, pp.1-7, Nov. 2020.

Araya Kibrom Desta, Shuji Ohira, Ismail Arai, Kazutoshi Fujikawa, “ID
Sequence Analysis for Intrusion Detection in the CAN bus using Long
Short Term Memory Networks,” IEEE International Conference on Per-
vasive Computing (PerCom), SPT-IoT: 4th Workshop on Security, Privacy
and Trust in the Internet of Things, pp.59-64, Mar. 2020.

Domestic Conference
∗大平修慈, Araya Kibrom Desta, 新井イスマイル, 藤川和利, “TDC による
遅延時間の高時間分解能観測に基づく CAN メッセージの送信元識別手法,”
研究報告コンピュータセキュリティ（CSEC）, pp.1-8, Dec. 2019.

∗大平修慈, 新井イスマイル, 井上博之, 藤川和利, “車載インフォテインメン

149

トシステムにおけるホワイトリストと遅延付加によるCANバス上のDoS攻
撃緩和手法,”コンピュータセキュリティシンポジウム 2018論文集, pp.1128-
1133, Oct. 2018.

150

	1. Introduction
	1.1 Security Threats on Automotive IoT
	1.2 State-of-the-Art Defenses on CAN
	1.2.1 Message Authentication
	1.2.2 Intrusion Detection

	1.3 Problems
	1.3.1 An Undiscovered DoS Vulnerability of Entropy-Based IDS
	1.3.2 Drawbacks of Intrusion Detection, Physical-Layer Identification, and CAN-Bus Protection

	1.4 Dissertation Contributions
	1.4.1 Motivation and Approach
	1.4.2 Dissertation Goal and Scope
	1.4.3 entropy-manipulation attack: Evasion Attack on Entropy-Based IDS
	1.4.4 Sliding Window Optimized Similarity Analysis Method
	1.4.5 PLI-TDC: Physical-Layer Identification with Time-to-Digital Converter for In-Vehicle Networks
	1.4.6 IVNProtect: Isolable and Traceable Lightweight CAN-Bus Kernel Protection

	1.5 Outline

	2. Controller Area Network and Its Vulnerabilities
	2.1 CAN Primer
	2.1.1 CAN Frame
	2.1.2 Arbitration
	2.1.3 Error Handling

	2.2 Vulnerablilities of CAN
	2.3 Attack Surfaces on Automotive IoT
	2.4 Our Remote Adversary Model

	3. entropy-manipulation attack: Evasion Attack on Entropy-Based IDS
	3.1 Introduction
	3.2 Related Work
	3.3 Entropy-Based IDS
	3.3.1 Fixed Time Based Method
	3.3.2 Sliding Window Based Method

	3.4 Attacker Model
	3.4.1 Traditional DoS Attack
	3.4.2 Randomized DoS Attack
	3.4.3 Targeted DoS Attack

	3.5 Feasibility of entropy-manipulation attack
	3.5.1 Root Cause of Evasion Attack
	3.5.2 Higher Priority IDs than Actual IDs
	3.5.3 Sliding Window Poisoning Tactics

	3.6 Evaluation
	3.6.1 Entropy of Real-Vehicles
	3.6.2 Recall of Entropy-Based IDS under entropy-manipulation attacks
	3.6.3 Precision of Manipulation-Aware Entropy-Based IDS
	3.6.4 Evasive Performance during Sliding Window Poisoning Tactics

	3.7 Discussion
	3.7.1 Feasibility of Evasion Attack on Entropy-Based IDS
	3.7.2 Detection of entropy-manipulation attacks

	3.8 Conclusion

	4. Sliding Window Optimized Similarity Analysis Method against entropy-manipulation attack
	4.1 Introduction
	4.2 Similarity-Based IDS against Various DoS Attacks
	4.2.1 Definition of Similarity
	4.2.2 Framework of Similarity-Based IDS
	4.2.3 On-Line Detection Phase
	4.2.4 Off-Line Detection Phase

	4.3 Evaluation
	4.3.1 Precision against Various DoS Attacks
	4.3.2 Precision against Various CAN ID Ranges of Randomized DoS Attack
	4.3.3 Detection Time

	4.4 Discussion
	4.4.1 Precision
	4.4.2 Detection Time
	4.4.3 Comparisons

	4.5 Conclusion

	5. PLI-TDC: Physical-Layer Identification with Time-to-Digital Converter for In-Vehicle Networks
	5.1 Introduction
	5.2 Related Work
	5.2.1 Voltage Domain Characteristics Based PLI
	5.2.2 Time Domain Characteristics Based PLI

	5.3 Super Fine Delay-Time Based Physical-Layer Identification
	5.3.1 Data Acquisition with TDC
	5.3.2 Feature Extraction
	5.3.3 Classification
	5.3.4 Enhancing the Concept Drift Robustness
	5.3.5 Implementation

	5.4 Evaluation
	5.4.1 Environments and Attacker Models
	5.4.2 Idetification of ECUs
	5.4.3 Attacker Detection
	5.4.4 Identification of ECUs under Temperature Concept Drift
	5.4.5 Detection Time

	5.5 Discussion
	5.5.1 Identification / Detection Accuracy
	5.5.2 Number of Samplings
	5.5.3 Detection Time
	5.5.4 Stability and Life-Cycle
	5.5.5 Comparison with Time Domain Reflectometry
	5.5.6 Limitation

	5.6 Conclusion

	6. IVNProtect: Isolable and Traceable Lightweight CAN-Bus Kernel-Level Protection
	6.1 Introduction
	6.2 Related Work
	6.2.1 Protections Implemented on Bus
	6.2.2 IDS-side Protection
	6.2.3 ECU-side Protections

	6.3 Proposed CAN-Bus Kernel-Level Protection
	6.3.1 Threat Models
	6.3.2 Problem Statement
	6.3.3 Overview of IVNProtect
	6.3.4 Detection Modules
	6.3.5 Security Error State Mechanism

	6.4 Implementation
	6.5 Evaluation
	6.5.1 Environment and Dataset
	6.5.2 Prevention of DoS Attacks
	6.5.3 Isolation Time
	6.5.4 Benign Transmission Loss Rate under DoS Attacks
	6.5.5 Benign Transmission Delay under DoS Attacks
	6.5.6 Overhead with IVNProtect

	6.6 Discussion
	6.6.1 Comparison among ECU-side Protections
	6.6.2 Warning Response using IVNProtect

	6.7 Limitation
	6.8 Conclusion

	7. Conclusions and Future Research Direction
	7.1 Reviewing the Research Contributions
	7.2 Open Issue and Future Research Direction
	7.2.1 Protection of Physical-Layer Attacks
	7.2.2 Sophistication of IDS and PLI's alerts for VSOC analysts
	7.2.3 Robustness of IDS and PLI for Concept Drift Caused by Various Vehicles
	7.2.4 Improving Accuracy of Physical-Layer Identification
	7.2.5 Security Analysis and Mechanism for Next-Generation In-Vehicle Networks

	Acknowledgements
	References

